IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v36y2023i1d10.1007_s10959-022-01166-0.html
   My bibliography  Save this article

On Self-Similar Bernstein Functions and Corresponding Generalized Fractional Derivatives

Author

Listed:
  • Peter Kern

    (Heinrich-Heine-University Düsseldorf)

  • Svenja Lage

    (Heinrich-Heine-University Düsseldorf)

Abstract

We use the theory of Bernstein functions to analyze power law tail behavior with log-periodic perturbations which corresponds to self-similarity of the Bernstein functions. Such tail behavior appears in the context of semistable Lévy processes. The Bernstein approach enables us to solve some open questions concerning semi-fractional derivatives recently introduced in Kern et al. (Fract Calc Appl Anal 22(2):326–357, 2019) by means of the generators of certain semistable Lévy processes. In particular, it is shown that semi-fractional derivatives can be seen as generalized fractional derivatives in the sense of Kochubei (Integr Equ Oper Theory 71:583–600, 2011) and generalized fractional derivatives can be constructed by means of arbitrary Bernstein functions vanishing at the origin.

Suggested Citation

  • Peter Kern & Svenja Lage, 2023. "On Self-Similar Bernstein Functions and Corresponding Generalized Fractional Derivatives," Journal of Theoretical Probability, Springer, vol. 36(1), pages 348-371, March.
  • Handle: RePEc:spr:jotpro:v:36:y:2023:i:1:d:10.1007_s10959-022-01166-0
    DOI: 10.1007/s10959-022-01166-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-022-01166-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-022-01166-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nadjib Bouzar, 2008. "The semi-Sibuya distribution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(2), pages 459-464, June.
    2. Tomasz J. Kozubowski & Krzysztof Podgórski, 2018. "A generalized Sibuya distribution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(4), pages 855-887, August.
    3. Peter Kern & Mark M. Meerschaert & Yimin Xiao, 2018. "Asymptotic Behavior of Semistable Lévy Exponents and Applications to Fractal Path Properties," Journal of Theoretical Probability, Springer, vol. 31(1), pages 598-617, March.
    4. Christoph, Gerd & Schreiber, Karina, 2000. "Scaled Sibuya distribution and discrete self-decomposability," Statistics & Probability Letters, Elsevier, vol. 48(2), pages 181-187, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thierry E. Huillet, 2022. "Chance Mechanisms Involving Sibuya Distribution and its Relatives," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 722-764, November.
    2. Nadjib Bouzar & K. Jayakumar, 2008. "Time series with discrete semistable marginals," Statistical Papers, Springer, vol. 49(4), pages 619-635, October.
    3. Nadjib Bouzar, 2008. "The semi-Sibuya distribution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(2), pages 459-464, June.
    4. Rodrigues, Josemar & Balakrishnan, N. & Cordeiro, Gauss M. & de Castro, Mário, 2011. "A unified view on lifetime distributions arising from selection mechanisms," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3311-3319, December.
    5. N. Bouzar & S. Satheesh, 2008. "Comments on a-decomposability," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(2), pages 243-252.
    6. Tomasz J. Kozubowski & Krzysztof Podgórski, 2018. "A generalized Sibuya distribution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(4), pages 855-887, August.
    7. Zhu, Rong & Joe, Harry, 2009. "Modelling heavy-tailed count data using a generalised Poisson-inverse Gaussian family," Statistics & Probability Letters, Elsevier, vol. 79(15), pages 1695-1703, August.
    8. Soltani, A.R. & Shirvani, A. & Alqallaf, F., 2009. "A class of discrete distributions induced by stable laws," Statistics & Probability Letters, Elsevier, vol. 79(14), pages 1608-1614, July.
    9. Tomasz Luks & Yimin Xiao, 2020. "Multiple Points of Operator Semistable Lévy Processes," Journal of Theoretical Probability, Springer, vol. 33(1), pages 153-179, March.
    10. Thomas M. Michelitsch & Federico Polito & Alejandro P. Riascos, 2023. "Semi-Markovian Discrete-Time Telegraph Process with Generalized Sibuya Waiting Times," Mathematics, MDPI, vol. 11(2), pages 1-20, January.
    11. Thierry E. Huillet, 2020. "On New Mechanisms Leading to Heavy-Tailed Distributions Related to the Ones Of Yule-Simon," Indian Journal of Pure and Applied Mathematics, Springer, vol. 51(1), pages 321-344, March.
    12. Balakrishnan, N. & Jones, M.C., 2022. "Closure of beta and Dirichlet distributions under discrete mixing," Statistics & Probability Letters, Elsevier, vol. 188(C).
    13. Jones, M.C. & Balakrishnan, N., 2021. "Simple functions of independent beta random variables that follow beta distributions," Statistics & Probability Letters, Elsevier, vol. 170(C).
    14. Nadjib Bouzar, 2008. "Semi-self-decomposable distributions on Z +," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(4), pages 901-917, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:36:y:2023:i:1:d:10.1007_s10959-022-01166-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.