IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v268y1999i3p454-468.html
   My bibliography  Save this article

Stochastic foundation of normal and anomalous Cattaneo-type transport

Author

Listed:
  • Metzler, Ralf
  • Compte, Albert

Abstract

We investigate the connection of the Cattaneo equation and the stochastic continuous time random walk (CTRW) theory. We show that the velocity model in a CTRW scheme is suited to derive the standard Cattaneo equation, and allows, in principle, for a generalisation to anomalous transport. As a result for a broad waiting time distribution with diverging mean, we find a strong memory to the initial condition of the system: The ballistic behaviour subsists also for long times. Only if a characteristic waiting time exists, a non-ballistic, enhanced motion is found in the limit of long times. No transition to subdiffusion can be found.

Suggested Citation

  • Metzler, Ralf & Compte, Albert, 1999. "Stochastic foundation of normal and anomalous Cattaneo-type transport," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 268(3), pages 454-468.
  • Handle: RePEc:eee:phsmap:v:268:y:1999:i:3:p:454-468
    DOI: 10.1016/S0378-4371(99)00058-8
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437199000588
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(99)00058-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Awad, Emad, 2019. "On the time-fractional Cattaneo equation of distributed order," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 210-233.
    2. Thomas M. Michelitsch & Federico Polito & Alejandro P. Riascos, 2023. "Semi-Markovian Discrete-Time Telegraph Process with Generalized Sibuya Waiting Times," Mathematics, MDPI, vol. 11(2), pages 1-20, January.
    3. Abel Garcia-Bernabé & S. I. Hernández & L. F. Del Castillo & David Jou, 2016. "Continued-Fraction Expansion of Transport Coefficients with Fractional Calculus," Mathematics, MDPI, vol. 4(4), pages 1-10, December.
    4. Povstenko, Y.Z., 2010. "Evolution of the initial box-signal for time-fractional diffusion–wave equation in a case of different spatial dimensions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4696-4707.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:268:y:1999:i:3:p:454-468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.