IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i2p390-d1032736.html
   My bibliography  Save this article

Multi-Strategy Enhanced Harris Hawks Optimization for Global Optimization and Deep Learning-Based Channel Estimation Problems

Author

Listed:
  • Yunshan Sun

    (School of Information Engineering, Tianjin University of Commerce, Tianjin 300134, China)

  • Qian Huang

    (School of Information Engineering, Tianjin University of Commerce, Tianjin 300134, China)

  • Ting Liu

    (School of Information Engineering, Tianjin University of Commerce, Tianjin 300134, China)

  • Yuetong Cheng

    (School of Information Engineering, Tianjin University of Commerce, Tianjin 300134, China)

  • Yanqin Li

    (School of Information Engineering, Tianjin University of Commerce, Tianjin 300134, China)

Abstract

Harris Hawks Optimization (HHO) simulates the cooperative hunting behavior of Harris hawks and it has the advantages of fewer control parameters, simple principles, and excellent exploitation ability. However, HHO also has the disadvantages of slow convergence and easy falling into local optimality. Aiming at the above shortcomings, this paper proposes a Multi-strategy Enhanced Harris Hawks Optimization (MEHHO). Firstly, the map-compass operator and Cauchy mutation strategy are used to increase the population diversity and improve the ability of the algorithm to jump out of the local optimal. Secondly, a spiral motion strategy is introduced to improve the exploration phase to enhance search efficiency. Finally, the convergence speed and accuracy of the algorithm are improved by greedy selection to fully retain the dominant individuals. The global search capability of the proposed MEHHO is verified by 28 benchmark test functions, and then the parameters of the deep learning network used for channel estimation are optimized by using the MEHHO to verify the practicability of the MEHHO. Experimental results show that the proposed MEHHO has more advantages in solving global optimization problems and improving the accuracy of the channel estimation method based on deep learning.

Suggested Citation

  • Yunshan Sun & Qian Huang & Ting Liu & Yuetong Cheng & Yanqin Li, 2023. "Multi-Strategy Enhanced Harris Hawks Optimization for Global Optimization and Deep Learning-Based Channel Estimation Problems," Mathematics, MDPI, vol. 11(2), pages 1-28, January.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:2:p:390-:d:1032736
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/2/390/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/2/390/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ebubekir Kaya, 2022. "A New Neural Network Training Algorithm Based on Artificial Bee Colony Algorithm for Nonlinear System Identification," Mathematics, MDPI, vol. 10(19), pages 1-27, September.
    2. Fan Yang & Xi Fang & Fei Gao & Xianjin Zhou & Hao Li & Hongbin Jin & Yu Song & Shi Cheng, 2022. "Obstacle Avoidance Path Planning for UAV Based on Improved RRT Algorithm," Discrete Dynamics in Nature and Society, Hindawi, vol. 2022, pages 1-9, January.
    3. Ahmed A. Ewees & Fatma H. Ismail & Rania M. Ghoniem & Marwa A. Gaheen, 2022. "Enhanced Marine Predators Algorithm for Solving Global Optimization and Feature Selection Problems," Mathematics, MDPI, vol. 10(21), pages 1-21, November.
    4. Khalid Abdulaziz Alnowibet & Salem Mahdi & Mahmoud El-Alem & Mohamed Abdelawwad & Ali Wagdy Mohamed, 2022. "Guided Hybrid Modified Simulated Annealing Algorithm for Solving Constrained Global Optimization Problems," Mathematics, MDPI, vol. 10(8), pages 1-25, April.
    5. Shugang Li & Yanfang Wei & Xin Liu & He Zhu & Zhaoxu Yu, 2022. "A New Fast Ant Colony Optimization Algorithm: The Saltatory Evolution Ant Colony Optimization Algorithm," Mathematics, MDPI, vol. 10(6), pages 1-22, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sherif A. Zaid & Ahmed M. Kassem & Aadel M. Alatwi & Hani Albalawi & Hossam AbdelMeguid & Atef Elemary, 2023. "Optimal Control of an Autonomous Microgrid Integrated with Super Magnetic Energy Storage Using an Artificial Bee Colony Algorithm," Sustainability, MDPI, vol. 15(11), pages 1-19, May.
    2. Marjan Golob, 2023. "NARX Deep Convolutional Fuzzy System for Modelling Nonlinear Dynamic Processes," Mathematics, MDPI, vol. 11(2), pages 1-22, January.
    3. Ali Najem Alkawaz & Jeevan Kanesan & Anis Salwa Mohd Khairuddin & Irfan Anjum Badruddin & Sarfaraz Kamangar & Mohamed Hussien & Maughal Ahmed Ali Baig & N. Ameer Ahammad, 2023. "Training Multilayer Neural Network Based on Optimal Control Theory for Limited Computational Resources," Mathematics, MDPI, vol. 11(3), pages 1-15, February.
    4. Ahmad M. Alshamrani & Adel Fahad Alrasheedi & Khalid Abdulaziz Alnowibet & Salem Mahdi & Ali Wagdy Mohamed, 2022. "A Hybrid Stochastic Deterministic Algorithm for Solving Unconstrained Optimization Problems," Mathematics, MDPI, vol. 10(17), pages 1-26, August.
    5. Savin Treanţă, 2022. "Variational Problems and Applications," Mathematics, MDPI, vol. 11(1), pages 1-4, December.
    6. Eltiyeb Ali & Salem Mahdi, 2023. "Adaptive Hybrid Mixed Two-Point Step Size Gradient Algorithm for Solving Non-Linear Systems," Mathematics, MDPI, vol. 11(9), pages 1-35, April.
    7. Shugang Li & Hui Chen & Xin Liu & Jiayi Li & Kexin Peng & Ziming Wang, 2023. "Online Personalized Learning Path Recommendation Based on Saltatory Evolution Ant Colony Optimization Algorithm," Mathematics, MDPI, vol. 11(13), pages 1-19, June.
    8. Wang, Huijie & Qiu, Baoyun & Zhao, Fangling & Yan, Tianxu, 2023. "Method for increasing net power of power plant based on operation optimization of circulating cooling water system," Energy, Elsevier, vol. 282(C).
    9. Khalid Abdulaziz Alnowibet & Salem Mahdi & Ahmad M. Alshamrani & Karam M. Sallam & Ali Wagdy Mohamed, 2022. "A Family of Hybrid Stochastic Conjugate Gradient Algorithms for Local and Global Minimization Problems," Mathematics, MDPI, vol. 10(19), pages 1-37, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:2:p:390-:d:1032736. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.