IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i13p2792-d1176001.html
   My bibliography  Save this article

Online Personalized Learning Path Recommendation Based on Saltatory Evolution Ant Colony Optimization Algorithm

Author

Listed:
  • Shugang Li

    (School of Management, Shanghai University, Shanghai 200444, China)

  • Hui Chen

    (School of Management, Shanghai University, Shanghai 200444, China)

  • Xin Liu

    (School of Management, Shanghai University, Shanghai 200444, China)

  • Jiayi Li

    (Songjiang No. 2 Middle School, Shanghai 201600, China)

  • Kexin Peng

    (School of Management, Shanghai University, Shanghai 200444, China)

  • Ziming Wang

    (School of Management, Shanghai University, Shanghai 200444, China)

Abstract

To solve the problems of slow convergence and low accuracy when the traditional ant colony optimization (ACO) algorithm is applied to online learning path recommendation problems, this study proposes an online personalized learning path recommendation model (OPLPRM) based on the saltatory evolution ant colony optimization (SEACO) algorithm to achieve fast, accurate, real-time interactive and high-quality learning path recommendations. Consequently, an online personalized learning path optimization model with a time window was constructed first. This model not only considers the learning order of the recommended learning resources, but also further takes the review behavior pattern of learners into consideration, which improves the quality of the learning path recommendation. Then, this study constructed a SEACO algorithm suitable for online personalized learning path recommendation, from the perspective of optimal learning path prediction, which predicts path pheromone evolution by mining historical data, injecting the domain knowledge of learning path prediction that can achieve best learning effects extracted from domain experts and reducing invalid search, thus improving the speed and accuracy of learning path optimization. A simulation experiment was carried out on the proposed online personalized learning path recommendation model by using the real leaner learning behavior data set from the British “Open University” platform. The results illustrate that the performance of the proposed online personalized learning path recommendation model, based on the SEACO algorithm for improving the optimization speed and accuracy of the learning path, is better than traditional ACO algorithm, and it can quickly and accurately recommend the most suitable learning path according to the changing needs of learners in a limited time.

Suggested Citation

  • Shugang Li & Hui Chen & Xin Liu & Jiayi Li & Kexin Peng & Ziming Wang, 2023. "Online Personalized Learning Path Recommendation Based on Saltatory Evolution Ant Colony Optimization Algorithm," Mathematics, MDPI, vol. 11(13), pages 1-19, June.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:13:p:2792-:d:1176001
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/13/2792/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/13/2792/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lipowski, Adam & Lipowska, Dorota, 2012. "Roulette-wheel selection via stochastic acceptance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(6), pages 2193-2196.
    2. Shugang Li & Yanfang Wei & Xin Liu & He Zhu & Zhaoxu Yu, 2022. "A New Fast Ant Colony Optimization Algorithm: The Saltatory Evolution Ant Colony Optimization Algorithm," Mathematics, MDPI, vol. 10(6), pages 1-22, March.
    3. Khizer Mehmood & Naveed Ishtiaq Chaudhary & Zeshan Aslam Khan & Khalid Mehmood Cheema & Muhammad Asif Zahoor Raja & Ahmad H. Milyani & Abdullah Ahmed Azhari, 2022. "Dwarf Mongoose Optimization Metaheuristics for Autoregressive Exogenous Model Identification," Mathematics, MDPI, vol. 10(20), pages 1-21, October.
    4. Alexander Ly & Maarten Marsman & Eric†Jan Wagenmakers, 2018. "Analytic posteriors for Pearson's correlation coefficient," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(1), pages 4-13, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghareeb Moustafa & Ali M. El-Rifaie & Idris H. Smaili & Ahmed Ginidi & Abdullah M. Shaheen & Ahmed F. Youssef & Mohamed A. Tolba, 2023. "An Enhanced Dwarf Mongoose Optimization Algorithm for Solving Engineering Problems," Mathematics, MDPI, vol. 11(15), pages 1-26, July.
    2. Chen, Enming & Zhou, Zhongbao & Li, Ruiyang & Chang, Zhongxiang & Shi, Jianmai, 2024. "The multi-fleet delivery problem combined with trucks, tricycles, and drones for last-mile logistics efficiency requirements under multiple budget constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 187(C).
    3. Díaz-Vallejo, Mauricio & Peña-Peniche, Alexander & Mota-Vargas, Claudio & Piña-Torres, Javier & Valencia-Rodríguez, Daniel & Rangel-Rivera, Coral E. & Gaviria-Hernández, Juliana & Rojas-Soto, Octavio, 2024. "Analyses of the variable selection using correlation methods: An approach to the importance of statistical inferences in the modelling process," Ecological Modelling, Elsevier, vol. 498(C).
    4. Andrés Alfonso Rosales-Muñoz & Luis Fernando Grisales-Noreña & Jhon Montano & Oscar Danilo Montoya & Alberto-Jesus Perea-Moreno, 2021. "Application of the Multiverse Optimization Method to Solve the Optimal Power Flow Problem in Direct Current Electrical Networks," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    5. Cheng Jin & Zhifeng Jia & Ge Li & Lingke Zhao & Yuze Ren, 2024. "Effect of Soil Moisture Content on Condensation Water in Typical Loess and Sandy Soil," Land, MDPI, vol. 13(7), pages 1-16, June.
    6. Hu, Yusha & Li, Jigeng & Hong, Mengna & Ren, Jingzheng & Lin, Ruojue & Liu, Yue & Liu, Mengru & Man, Yi, 2019. "Short term electric load forecasting model and its verification for process industrial enterprises based on hybrid GA-PSO-BPNN algorithm—A case study of papermaking process," Energy, Elsevier, vol. 170(C), pages 1215-1227.
    7. Mehmet Burak Şenol & Ekrem Alper Murat, 2023. "A sequential solution heuristic for continuous facility layout problems," Annals of Operations Research, Springer, vol. 320(1), pages 355-377, January.
    8. Baowei Wang & Peng Zhao, 2020. "An Adaptive Image Watermarking Method Combining SVD and Wang-Landau Sampling in DWT Domain," Mathematics, MDPI, vol. 8(5), pages 1-20, May.
    9. Khizer Mehmood & Naveed Ishtiaq Chaudhary & Zeshan Aslam Khan & Khalid Mehmood Cheema & Muhammad Asif Zahoor Raja & Ahmad H. Milyani & Abdullah Ahmed Azhari, 2022. "Nonlinear Hammerstein System Identification: A Novel Application of Marine Predator Optimization Using the Key Term Separation Technique," Mathematics, MDPI, vol. 10(22), pages 1-22, November.
    10. Mehmood, Khizer & Chaudhary, Naveed Ishtiaq & Khan, Zeshan Aslam & Cheema, Khalid Mehmood & Raja, Muhammad Asif Zahoor & Shu, Chi-Min, 2023. "Novel knacks of chaotic maps with Archimedes optimization paradigm for nonlinear ARX model identification with key term separation," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    11. Fathy, Ahmed, 2022. "A novel artificial hummingbird algorithm for integrating renewable based biomass distributed generators in radial distribution systems," Applied Energy, Elsevier, vol. 323(C).
    12. Pascal P Klamser & Pawel Romanczuk, 2021. "Collective predator evasion: Putting the criticality hypothesis to the test," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-21, March.
    13. João Vitor Leme & Wallace Casaca & Marilaine Colnago & Maurício Araújo Dias, 2020. "Towards Assessing the Electricity Demand in Brazil: Data-Driven Analysis and Ensemble Learning Models," Energies, MDPI, vol. 13(6), pages 1-20, March.
    14. Maryam Dehghan Chenary & Arman Ferdowsi & Richard F. Hartl, 2024. "A Pareto-Based Clustering Approach for Solving a Bi-Objective Mobile Hub Location Problem with Congestion," Logistics, MDPI, vol. 8(4), pages 1-30, December.
    15. Ojer, Jaume & López, Álvaro G. & Used, Javier & Sanjuán, Miguel A.F., 2022. "A stochastic hybrid model with a fast concentration bias for chemotactic cellular attraction," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    16. Jian Chen & Jiajun Zhu & Xu Qin & Wenxiang Xie, 2023. "Reducing Octane Number Loss in Gasoline Refining Process by Using the Improved Sparrow Search Algorithm," Sustainability, MDPI, vol. 15(8), pages 1-21, April.
    17. Sun, Li & Liu, Like & Xu, Zhongzhi & Jie, Yang & Wei, Dong & Wang, Pu, 2015. "Locating inefficient links in a large-scale transportation network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 537-545.
    18. Farhan Aadil & Khalid Bashir Bajwa & Salabat Khan & Nadeem Majeed Chaudary & Adeel Akram, 2016. "CACONET: Ant Colony Optimization (ACO) Based Clustering Algorithm for VANET," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-21, May.
    19. Wu, Qinghua & He, Mu & Hao, Jin-Kao & Lu, Yongliang, 2024. "An effective hybrid evolutionary algorithm for the clustered orienteering problem," European Journal of Operational Research, Elsevier, vol. 313(2), pages 418-434.
    20. Sean Grimes & David E. Breen, 2023. "A Multi-Agent Approach to Binary Classification Using Swarm Intelligence," Future Internet, MDPI, vol. 15(1), pages 1-27, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:13:p:2792-:d:1176001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.