A Non-Linear Trend Function for Kriging with External Drift Using Least Squares Support Vector Regression
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Zhong, Hai & Wang, Jiajun & Jia, Hongjie & Mu, Yunfei & Lv, Shilei, 2019. "Vector field-based support vector regression for building energy consumption prediction," Applied Energy, Elsevier, vol. 242(C), pages 403-414.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Fan, Cheng & Sun, Yongjun & Xiao, Fu & Ma, Jie & Lee, Dasheng & Wang, Jiayuan & Tseng, Yen Chieh, 2020. "Statistical investigations of transfer learning-based methodology for short-term building energy predictions," Applied Energy, Elsevier, vol. 262(C).
- Hisham Alghamdi & Aníbal Alviz-Meza, 2023. "A Novel Strategy for Converting Conventional Structures into Net-Zero-Energy Buildings without Destruction," Sustainability, MDPI, vol. 15(14), pages 1-14, July.
- Zeng, Sheng & Su, Bin & Zhang, Minglong & Gao, Yuan & Liu, Jun & Luo, Song & Tao, Qingmei, 2021. "Analysis and forecast of China's energy consumption structure," Energy Policy, Elsevier, vol. 159(C).
- Wu, Jinran & Wang, You-Gan & Tian, Yu-Chu & Burrage, Kevin & Cao, Taoyun, 2021. "Support vector regression with asymmetric loss for optimal electric load forecasting," Energy, Elsevier, vol. 223(C).
- Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
- Imed Khabbouchi & Dhaou Said & Aziz Oukaira & Idir Mellal & Lyes Khoukhi, 2023. "Machine Learning and Game-Theoretic Model for Advanced Wind Energy Management Protocol (AWEMP)," Energies, MDPI, vol. 16(5), pages 1-15, February.
- Zhaocheng Li & Yu Song, 2022. "Energy Consumption Linkages of the Chinese Construction Sector," Energies, MDPI, vol. 15(5), pages 1-13, February.
- Marek Borowski & Klaudia Zwolińska, 2020. "Prediction of Cooling Energy Consumption in Hotel Building Using Machine Learning Techniques," Energies, MDPI, vol. 13(23), pages 1-19, November.
- Wang, Yalin & Xie, Wufei & Liu, Chenliang & Luo, Jiang & Qiu, Zhifeng & Deconinck, Geert, 2024. "Forecast of coal consumption in salt lake enterprises based on temporal gated recurrent unit network with squeeze-and-excitation attention," Energy, Elsevier, vol. 299(C).
- Elsa Chaerun Nisa & Yean-Der Kuan, 2021. "Comparative Assessment to Predict and Forecast Water-Cooled Chiller Power Consumption Using Machine Learning and Deep Learning Algorithms," Sustainability, MDPI, vol. 13(2), pages 1-18, January.
- Saidjon Shiralievich Tavarov & Pavel Matrenin & Murodbek Safaraliev & Mihail Senyuk & Svetlana Beryozkina & Inga Zicmane, 2023. "Forecasting of Electricity Consumption by Household Consumers Using Fuzzy Logic Based on the Development Plan of the Power System of the Republic of Tajikistan," Sustainability, MDPI, vol. 15(4), pages 1-14, February.
- Xiong, Suqin & Li, Yang & Li, Qiuyang & Ye, Zhishan & Pouramini, Somayeh, 2024. "Energy consumption prediction by modified fish migration optimization algorithm: City single-family homes," Applied Energy, Elsevier, vol. 353(PA).
- Fateme Dinmohammadi & Yuxuan Han & Mahmood Shafiee, 2023. "Predicting Energy Consumption in Residential Buildings Using Advanced Machine Learning Algorithms," Energies, MDPI, vol. 16(9), pages 1-23, April.
- Zhang, Xinru & Hou, Lei & Liu, Jiaquan & Yang, Kai & Chai, Chong & Li, Yanhao & He, Sichen, 2022. "Energy consumption prediction for crude oil pipelines based on integrating mechanism analysis and data mining," Energy, Elsevier, vol. 254(PB).
- Wang, Guimei & Mukhtar, Azfarizal & Moayedi, Hossein & Khalilpoor, Nima & Tt, Quynh, 2024. "Application and evaluation of the evolutionary algorithms combined with conventional neural network to determine the building energy consumption of the residential sector," Energy, Elsevier, vol. 298(C).
- Emami Javanmard, M. & Tang, Y. & Wang, Z. & Tontiwachwuthikul, P., 2023. "Forecast energy demand, CO2 emissions and energy resource impacts for the transportation sector," Applied Energy, Elsevier, vol. 338(C).
- Amira Mouakher & Wissem Inoubli & Chahinez Ounoughi & Andrea Ko, 2022. "Expect : EXplainable Prediction Model for Energy ConsumpTion," Mathematics, MDPI, vol. 10(2), pages 1-21, January.
- Kapp, Sean & Choi, Jun-Ki & Hong, Taehoon, 2023. "Predicting industrial building energy consumption with statistical and machine-learning models informed by physical system parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
- Fang, Xi & Gong, Guangcai & Li, Guannan & Chun, Liang & Li, Wenqiang & Peng, Pei, 2021. "A hybrid deep transfer learning strategy for short term cross-building energy prediction," Energy, Elsevier, vol. 215(PB).
- Bai, Hongyu & Zhu, Jie & Chen, Xiangjie & Chu, Junze & Cui, Yuanlong & Yan, Yuying, 2020. "Steady-state performance evaluation and energy assessment of a complete membrane-based liquid desiccant dehumidification system," Applied Energy, Elsevier, vol. 258(C).
More about this item
Keywords
geostatistics; spatial interpolation; kriging with external drift; least squares support vector regression; trend function;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:23:p:4799-:d:1289332. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.