IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i23p4733-d1285711.html
   My bibliography  Save this article

Metaheuristic Procedures for the Determination of a Bank of Switching Observers toward Soft Sensor Design with Application to an Alcoholic Fermentation Process

Author

Listed:
  • Nikolaos D. Kouvakas

    (Robotics, Automatic Control and Cyber-Physical Systems Laboratory, Department of Digital Industry Technologies, School of Science, National and Kapodistrian University of Athens, Euripus Campus, 34400 Euboea, Greece)

  • Fotis N. Koumboulis

    (Robotics, Automatic Control and Cyber-Physical Systems Laboratory, Department of Digital Industry Technologies, School of Science, National and Kapodistrian University of Athens, Euripus Campus, 34400 Euboea, Greece)

  • Dimitrios G. Fragkoulis

    (Robotics, Automatic Control and Cyber-Physical Systems Laboratory, Department of Digital Industry Technologies, School of Science, National and Kapodistrian University of Athens, Euripus Campus, 34400 Euboea, Greece)

  • George F. Fragulis

    (Internet of Things and Applications Lab, Department of Electrical and Computer Engineering, University of Western Macedonia, 50100 Kozani, Greece)

Abstract

The present work focused on the development of soft sensors for single-input single-output (SISO) nonlinear dynamic systems with unknown physical parameters using a switching observer design. Toward the development of more accurate soft sensors, as compared with hard sensors, an extended design methodology for the determination of a bank of operating points satisfying the dense web principle was proposed, where for the determination of the bank of operating points and the observer parameters, a metaheuristic procedure was developed. To validate the results of the metaheuristic algorithm, the case of an alcoholic fermentation process was studied as a special case of the present approach. For the nonlinear model of the process, an observer-based soft sensor was developed using the metaheuristic procedure. First, the accuracy of the linear approximant of the process with respect to the original nonlinear model was investigated. Second, the I/O reconstructability of the linear approximant was verified. Third, based on the linear approximant, an observer was designed for the estimation of the non-measurable variable. Fourth, considering that the observer is designed upon the linear approximant, the linear approximant model parameters are derived through identification, for different operating points, upon the nonlinear model. Fifth, the observers corresponding to the different operating points, constitute a bank of observers. The design was completed using a data-driven rule-based system, performing stepwise switching between the observers of the bank. The efficiency of the proposed metaheuristic algorithm and the performance of the switching scheme were demonstrated through a series of computational experiments, where it was observed that the herein-proposed approach was more than two orders of magnitude more accurate than traditional single-step approaches of transition from one operating point to another.

Suggested Citation

  • Nikolaos D. Kouvakas & Fotis N. Koumboulis & Dimitrios G. Fragkoulis & George F. Fragulis, 2023. "Metaheuristic Procedures for the Determination of a Bank of Switching Observers toward Soft Sensor Design with Application to an Alcoholic Fermentation Process," Mathematics, MDPI, vol. 11(23), pages 1-42, November.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:23:p:4733-:d:1285711
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/23/4733/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/23/4733/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ricardo Aguilar-López & Edgar N. Tec-Caamal & M. Isabel Neria-González, 2020. "Observer-Based Control for Uncertain Nonlinear Systems Applied to Continuous Biochemical Reactors," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-8, July.
    2. Konak, Abdullah & Coit, David W. & Smith, Alice E., 2006. "Multi-objective optimization using genetic algorithms: A tutorial," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 992-1007.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gupta, Pankaj & Mittal, Garima & Mehlawat, Mukesh Kumar, 2013. "Expected value multiobjective portfolio rebalancing model with fuzzy parameters," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 190-203.
    2. Weifan Zhong & Lijing Du, 2023. "Predicting Traffic Casualties Using Support Vector Machines with Heuristic Algorithms: A Study Based on Collision Data of Urban Roads," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    3. Zhang, Yue & Zhang, Qi & Farnoosh, Arash & Chen, Siyuan & Li, Yan, 2019. "GIS-Based Multi-Objective Particle Swarm Optimization of charging stations for electric vehicles," Energy, Elsevier, vol. 169(C), pages 844-853.
    4. J. Octavio Gutierrez-Garcia & Kwang Mong Sim, 2012. "GA-based cloud resource estimation for agent-based execution of bag-of-tasks applications," Information Systems Frontiers, Springer, vol. 14(4), pages 925-951, September.
    5. Cai, Yuhao & Qian, Xin & Su, Ruihang & Jia, Xiongjie & Ying, Jinhui & Zhao, Tianshou & Jiang, Haoran, 2024. "Thermo-electrochemical modeling of thermally regenerative flow batteries," Applied Energy, Elsevier, vol. 355(C).
    6. Ahmadi, Mohammad H. & Amin Nabakhteh, Mohammad & Ahmadi, Mohammad-Ali & Pourfayaz, Fathollah & Bidi, Mokhtar, 2017. "Investigation and optimization of performance of nano-scale Stirling refrigerator using working fluid as Maxwell–Boltzmann gases," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 337-350.
    7. Hausken, Kjell & Levitin, Gregory, 2009. "Minmax defense strategy for complex multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 577-587.
    8. Akhlaque Ahmad Khan & Ahmad Faiz Minai & Rupendra Kumar Pachauri & Hasmat Malik, 2022. "Optimal Sizing, Control, and Management Strategies for Hybrid Renewable Energy Systems: A Comprehensive Review," Energies, MDPI, vol. 15(17), pages 1-29, August.
    9. Alarcon-Rodriguez, Arturo & Ault, Graham & Galloway, Stuart, 2010. "Multi-objective planning of distributed energy resources: A review of the state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1353-1366, June.
    10. Prina, Matteo Giacomo & Lionetti, Matteo & Manzolini, Giampaolo & Sparber, Wolfram & Moser, David, 2019. "Transition pathways optimization methodology through EnergyPLAN software for long-term energy planning," Applied Energy, Elsevier, vol. 235(C), pages 356-368.
    11. Janssens, Jochen & Van den Bergh, Joos & Sörensen, Kenneth & Cattrysse, Dirk, 2015. "Multi-objective microzone-based vehicle routing for courier companies: From tactical to operational planning," European Journal of Operational Research, Elsevier, vol. 242(1), pages 222-231.
    12. H. Liao & Q. Wu, 2013. "Multi-objective optimization by learning automata," Journal of Global Optimization, Springer, vol. 55(2), pages 459-487, February.
    13. Huan Yu & Jun Yang & Yu Zhao, 2018. "Reliability of nonrepairable phased-mission systems with common bus performance sharing," Journal of Risk and Reliability, , vol. 232(6), pages 647-660, December.
    14. Li, Yuqiang & Liu, Gang & Liu, Xianping & Liao, Shengming, 2016. "Thermodynamic multi-objective optimization of a solar-dish Brayton system based on maximum power output, thermal efficiency and ecological performance," Renewable Energy, Elsevier, vol. 95(C), pages 465-473.
    15. Ahmadi, Mohammad H. & Ahmadi, Mohammad-Ali & Maleki, Akbar & Pourfayaz, Fathollah & Bidi, Mokhtar & Açıkkalp, Emin, 2017. "Exergetic sustainability evaluation and multi-objective optimization of performance of an irreversible nanoscale Stirling refrigeration cycle operating with Maxwell–Boltzmann gas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 80-92.
    16. Nayara R. M. Sakiyama & Joyce C. Carlo & Leonardo Mazzaferro & Harald Garrecht, 2021. "Building Optimization through a Parametric Design Platform: Using Sensitivity Analysis to Improve a Radial-Based Algorithm Performance," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
    17. Abokersh, Mohamed Hany & Vallès, Manel & Cabeza, Luisa F. & Boer, Dieter, 2020. "A framework for the optimal integration of solar assisted district heating in different urban sized communities: A robust machine learning approach incorporating global sensitivity analysis," Applied Energy, Elsevier, vol. 267(C).
    18. Nizami, M.S.H. & Hossain, M.J. & Amin, B.M. Ruhul & Fernandez, Edstan, 2020. "A residential energy management system with bi-level optimization-based bidding strategy for day-ahead bi-directional electricity trading," Applied Energy, Elsevier, vol. 261(C).
    19. Y Xu & R Qu, 2011. "Solving multi-objective multicast routing problems by evolutionary multi-objective simulated annealing algorithms with variable neighbourhoods," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(2), pages 313-325, February.
    20. Ahmadi, Mohammad H. & Ahmadi, Mohammad Ali & Pourfayaz, Fathollah & Hosseinzade, Hadi & Acıkkalp, Emin & Tlili, Iskander & Feidt, Michel, 2016. "Designing a powered combined Otto and Stirling cycle power plant through multi-objective optimization approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 585-595.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:23:p:4733-:d:1285711. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.