IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i20p4394-d1265256.html
   My bibliography  Save this article

Age of Information Cost Minimization with No Buffers, Random Arrivals and Unreliable Channels: A PCL-Indexability Analysis

Author

Listed:
  • José Niño-Mora

    (Department of Statistics, Carlos III University of Madrid, 28903 Getafe, Madrid, Spain)

Abstract

Over the last decade, the Age of Information has emerged as a key concept and metric for applications where the freshness of sensor-provided data is critical. Limited transmission capacity has motivated research on the design of tractable policies for scheduling information updates to minimize Age of Information cost based on Markov decision models, in particular on the restless multi-armed bandit problem (RMABP). This allows the use of Whittle’s popular index policy, which is often nearly optimal, provided indexability (index existence) is proven, which has been recently accomplished in some models. We aim to extend the application scope of Whittle’s index policy in a broader AoI scheduling model. We address a model with no buffers incorporating random packet arrivals, unreliable channels, and nondecreasing AoI costs. We use sufficient indexability conditions based on partial conservation laws previously introduced by the author to establish the model’s indexability and evaluate its Whittle index in closed form under discounted and average cost criteria. We further use the index formulae to draw insights on how scheduling priority depends on model parameters.

Suggested Citation

  • José Niño-Mora, 2023. "Age of Information Cost Minimization with No Buffers, Random Arrivals and Unreliable Channels: A PCL-Indexability Analysis," Mathematics, MDPI, vol. 11(20), pages 1-28, October.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:20:p:4394-:d:1265256
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/20/4394/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/20/4394/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christos H. Papadimitriou & John N. Tsitsiklis, 1999. "The Complexity of Optimal Queuing Network Control," Mathematics of Operations Research, INFORMS, vol. 24(2), pages 293-305, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José Niño-Mora, 2006. "Restless Bandit Marginal Productivity Indices, Diminishing Returns, and Optimal Control of Make-to-Order/Make-to-Stock M/G/1 Queues," Mathematics of Operations Research, INFORMS, vol. 31(1), pages 50-84, February.
    2. Urtzi Ayesta & Manu K. Gupta & Ina Maria Verloop, 2021. "On the computation of Whittle’s index for Markovian restless bandits," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(1), pages 179-208, February.
    3. José Niño-Mora, 2020. "Fast Two-Stage Computation of an Index Policy for Multi-Armed Bandits with Setup Delays," Mathematics, MDPI, vol. 9(1), pages 1-36, December.
    4. José Niño-Mora, 2020. "A Verification Theorem for Threshold-Indexability of Real-State Discounted Restless Bandits," Mathematics of Operations Research, INFORMS, vol. 45(2), pages 465-496, May.
    5. Can Urgun, 2021. "Restless Contracting," Working Papers 2021-88, Princeton University. Economics Department..
    6. Song Lin & Juanjuan Zhang & John R. Hauser, 2015. "Learning from Experience, Simply," Marketing Science, INFORMS, vol. 34(1), pages 1-19, January.
    7. Glazebrook, K. D. & Mitchell, H. M. & Ansell, P. S., 2005. "Index policies for the maintenance of a collection of machines by a set of repairmen," European Journal of Operational Research, Elsevier, vol. 165(1), pages 267-284, August.
    8. Turgay Ayer & Can Zhang & Anthony Bonifonte & Anne C. Spaulding & Jagpreet Chhatwal, 2019. "Prioritizing Hepatitis C Treatment in U.S. Prisons," Operations Research, INFORMS, vol. 67(3), pages 853-873, May.
    9. Vivek S. Borkar & Sarath Pattathil, 2022. "Whittle indexability in egalitarian processor sharing systems," Annals of Operations Research, Springer, vol. 317(2), pages 417-437, October.
    10. Dong Li & Li Ding & Stephen Connor, 2020. "When to Switch? Index Policies for Resource Scheduling in Emergency Response," Production and Operations Management, Production and Operations Management Society, vol. 29(2), pages 241-262, February.
    11. Philip Cho & Vivek Farias & John Kessler & Retsef Levi & Thomas Magnanti & Eric Zarybnisky, 2015. "Maintenance and flight scheduling of low observable aircraft," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(1), pages 60-80, February.
    12. Ya‐Tang Chuang & Manaf Zargoush & Somayeh Ghazalbash & Saied Samiedaluie & Kerry Kuluski & Sara Guilcher, 2023. "From prediction to decision: Optimizing long‐term care placements among older delayed discharge patients," Production and Operations Management, Production and Operations Management Society, vol. 32(4), pages 1041-1058, April.
    13. T. W. Archibald & D. P. Black & K. D. Glazebrook, 2009. "Indexability and Index Heuristics for a Simple Class of Inventory Routing Problems," Operations Research, INFORMS, vol. 57(2), pages 314-326, April.
    14. Vishal Ahuja & John R. Birge, 2020. "An Approximation Approach for Response-Adaptive Clinical Trial Design," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 877-894, October.
    15. K. D. Glazebrook & R. Minty, 2009. "A Generalized Gittins Index for a Class of Multiarmed Bandits with General Resource Requirements," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 26-44, February.
    16. José Niño-Mora, 2023. "Markovian Restless Bandits and Index Policies: A Review," Mathematics, MDPI, vol. 11(7), pages 1-27, March.
    17. Doval, Laura, 2018. "Whether or not to open Pandora's box," Journal of Economic Theory, Elsevier, vol. 175(C), pages 127-158.
    18. Elliot Lee & Mariel S. Lavieri & Michael Volk, 2019. "Optimal Screening for Hepatocellular Carcinoma: A Restless Bandit Model," Service Science, INFORMS, vol. 21(1), pages 198-212, January.
    19. Ece Zeliha Demirci & Joachim Arts & Geert-Jan Van Houtum, 2022. "A restless bandit approach for capacitated condition based maintenance scheduling," DEM Discussion Paper Series 22-01, Department of Economics at the University of Luxembourg.
    20. K. D. Glazebrook & C. Kirkbride & J. Ouenniche, 2009. "Index Policies for the Admission Control and Routing of Impatient Customers to Heterogeneous Service Stations," Operations Research, INFORMS, vol. 57(4), pages 975-989, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:20:p:4394-:d:1265256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.