IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i1p218-d1022085.html
   My bibliography  Save this article

A Transformation-Based Improved Kriging Method for the Black Box Problem in Reliability-Based Design Optimization

Author

Listed:
  • Li Lu

    (National Center of Technology Innovation for Intelligent Design and Numerical Control, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Yizhong Wu

    (National Center of Technology Innovation for Intelligent Design and Numerical Control, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Qi Zhang

    (National Center of Technology Innovation for Intelligent Design and Numerical Control, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Ping Qiao

    (School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou 215011, China)

Abstract

In order to overcome the drawbacks of expensive function evaluation in the practical reliability-based design optimization (RBDO) problem, researchers have proposed the black box-based RBDO method. The algorithm flow of the commonly employed RBDO method for the black box problem consists of the outer construction loop of the surrogate model of the constraint function and the inner surrogate model-based solving loop. To improve the solving ability of the black box RBDO problem, this paper proposes a transformation-based improved kriging method to increase the effectiveness of the two loops identified above. For the outer loop, a sample distribution-based learning function is suggested to improve the construction efficiency of the surrogate model of the constraint function. For the inner loop, a paired incremental sample-based limit reliability boundary construction approach is suggested to transform the RBDO problem into an equivalent deterministic design optimization problem that can be efficiently solved by classical optimization algorithms. The test results of five cases demonstrate that the proposed method can accurately construct the surrogate model of the constraint function and efficiently solve the black box RBDO problem.

Suggested Citation

  • Li Lu & Yizhong Wu & Qi Zhang & Ping Qiao, 2023. "A Transformation-Based Improved Kriging Method for the Black Box Problem in Reliability-Based Design Optimization," Mathematics, MDPI, vol. 11(1), pages 1-19, January.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:1:p:218-:d:1022085
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/1/218/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/1/218/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jing, Zhao & Chen, Jianqiao & Li, Xu, 2019. "RBF-GA: An adaptive radial basis function metamodeling with genetic algorithm for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 42-57.
    2. Li, Yaohui & Shi, Junjun & Cen, Hui & Shen, Jingfang & Chao, Yanpu, 2021. "A kriging-based adaptive global optimization method with generalized expected improvement and its application in numerical simulation and crop evapotranspiration," Agricultural Water Management, Elsevier, vol. 245(C).
    3. Ni, Pinghe & Li, Jun & Hao, Hong & Yan, Weimin & Du, Xiuli & Zhou, Hongyuan, 2020. "Reliability analysis and design optimization of nonlinear structures," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    4. Jinghong Liang & Zissimos P. Mourelatos & Jian Tu, 2008. "A single-loop method for reliability-based design optimisation," International Journal of Product Development, Inderscience Enterprises Ltd, vol. 5(1/2), pages 76-92.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Meide & Zhang, Dequan & Jiang, Chao & Han, Xu & Li, Qing, 2021. "A hybrid adaptive Kriging-based single loop approach for complex reliability-based design optimization problems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    2. Van Huynh, Thu & Tangaramvong, Sawekchai & Do, Bach & Gao, Wei & Limkatanyu, Suchart, 2023. "Sequential most probable point update combining Gaussian process and comprehensive learning PSO for structural reliability-based design optimization," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    3. Pan, Yongjun & Sun, Yu & Li, Zhixiong & Gardoni, Paolo, 2023. "Machine learning approaches to estimate suspension parameters for performance degradation assessment using accurate dynamic simulations," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    4. Li, Wenxiong & Geng, Rong & Chen, Suiyin, 2024. "CSP-free adaptive Kriging surrogate model method for reliability analysis with small failure probability," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    5. Yaohui Li & Junjun Shi & Zhifeng Yin & Jingfang Shen & Yizhong Wu & Shuting Wang, 2021. "An Improved High-Dimensional Kriging Surrogate Modeling Method through Principal Component Dimension Reduction," Mathematics, MDPI, vol. 9(16), pages 1-18, August.
    6. Bakeer, Tammam, 2023. "General partial safety factor theory for the assessment of the reliability of nonlinear structural systems," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    7. Rivier, M. & Congedo, P.M., 2022. "Surrogate-Assisted Bounding-Box approach applied to constrained multi-objective optimisation under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    8. Hao, Peng & Yang, Hao & Wang, Yutian & Liu, Xuanxiu & Wang, Bo & Li, Gang, 2021. "Efficient reliability-based design optimization of composite structures via isogeometric analysis," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    9. Li, Junxiang & Chen, Jianqiao, 2019. "Solving time-variant reliability-based design optimization by PSO-t-IRS: A methodology incorporating a particle swarm optimization algorithm and an enhanced instantaneous response surface," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    10. Okoro, Aghatise & Khan, Faisal & Ahmed, Salim, 2023. "Dependency effect on the reliability-based design optimization of complex offshore structure," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    11. Li, Xiaoke & Zhu, Heng & Chen, Zhenzhong & Ming, Wuyi & Cao, Yang & He, Wenbin & Ma, Jun, 2022. "Limit state Kriging modeling for reliability-based design optimization through classification uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    12. Yaqun, Qi & Ping, Jin & Ruizhi, Li & Sheng, Zhang & Guobiao, Cai, 2020. "Dynamic reliability analysis for the reusable thrust chamber: A multi-failure modes investigation based on coupled thermal-structural analysis," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    13. Chen, Xuyong & Xu, Zhifeng & Wu, Yushun & Wu, Qiaoyun, 2023. "Heuristic algorithms for reliability estimation based on breadth-first search of a grid tree," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    14. Wang, Jinsheng & Xu, Guoji & Li, Yongle & Kareem, Ahsan, 2022. "AKSE: A novel adaptive Kriging method combining sampling region scheme and error-based stopping criterion for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    15. Alibeikloo, Mehrnaz & Khabbaz, Hadi & Fatahi, Behzad, 2022. "Random Field Reliability Analysis for Time-Dependent Behaviour of Soft Soils Considering Spatial Variability of Elastic Visco-Plastic Parameters," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    16. Shirgir, Sina & Shamsaddinlou, Amir & Zare, Reza Najafi & Zehtabiyan, Sorour & Bonab, Masoud Hajialilue, 2023. "An efficient double-loop reliability-based optimization with metaheuristic algorithms to design soil nail walls under uncertain condition," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    17. Saraygord Afshari, Sajad & Enayatollahi, Fatemeh & Xu, Xiangyang & Liang, Xihui, 2022. "Machine learning-based methods in structural reliability analysis: A review," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    18. Xiongxiong You & Mengya Zhang & Diyin Tang & Zhanwen Niu, 2022. "An active learning method combining adaptive kriging and weighted penalty for structural reliability analysis," Journal of Risk and Reliability, , vol. 236(1), pages 160-172, February.
    19. Hongyan Dui & Huiting Xu & Yun-An Zhang, 2022. "Reliability Analysis and Redundancy Optimization of a Command Post Phased-Mission System," Mathematics, MDPI, vol. 10(22), pages 1-15, November.
    20. Jiang, Chen & Qiu, Haobo & Gao, Liang & Wang, Dapeng & Yang, Zan & Chen, Liming, 2020. "EEK-SYS: System reliability analysis through estimation error-guided adaptive Kriging approximation of multiple limit state surfaces," Reliability Engineering and System Safety, Elsevier, vol. 198(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:1:p:218-:d:1022085. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.