IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i16p1985-d617735.html
   My bibliography  Save this article

An Improved High-Dimensional Kriging Surrogate Modeling Method through Principal Component Dimension Reduction

Author

Listed:
  • Yaohui Li

    (College of Mechanical and Electrical Engineering, Xuchang University, Xuchang 461000, China
    College of Science, Huazhong Agricultural University, Wuhan 430070, China)

  • Junjun Shi

    (College of Mechanical and Electrical Engineering, Xuchang University, Xuchang 461000, China
    College of Science, Huazhong Agricultural University, Wuhan 430070, China)

  • Zhifeng Yin

    (College of Mechanical and Electrical Engineering, Xuchang University, Xuchang 461000, China)

  • Jingfang Shen

    (College of Science, Huazhong Agricultural University, Wuhan 430070, China)

  • Yizhong Wu

    (National CAD Supported Software Engineering Centre, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Shuting Wang

    (National CAD Supported Software Engineering Centre, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract

The Kriging surrogate model in complex simulation problems uses as few expensive objectives as possible to establish a global or local approximate interpolation. However, due to the inversion of the covariance correlation matrix and the solving of Kriging-related parameters, the Kriging approximation process for high-dimensional problems is time consuming and even impossible to construct. For this reason, a high-dimensional Kriging modeling method through principal component dimension reduction (HDKM-PCDR) is proposed by considering the correlation parameters and the design variables of a Kriging model. It uses PCDR to transform a high-dimensional correlation parameter vector in Kriging into low-dimensional one, which is used to reconstruct a new correlation function. In this way, time consumption of correlation parameter optimization and correlation function matrix construction in the Kriging modeling process is greatly reduced. Compared with the original Kriging method and the high-dimensional Kriging modeling method based on partial least squares, the proposed method can achieve faster modeling efficiency under the premise of meeting certain accuracy requirements.

Suggested Citation

  • Yaohui Li & Junjun Shi & Zhifeng Yin & Jingfang Shen & Yizhong Wu & Shuting Wang, 2021. "An Improved High-Dimensional Kriging Surrogate Modeling Method through Principal Component Dimension Reduction," Mathematics, MDPI, vol. 9(16), pages 1-18, August.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:16:p:1985-:d:617735
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/16/1985/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/16/1985/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nobuo Namura & Koji Shimoyama & Shigeru Obayashi, 2017. "Kriging surrogate model with coordinate transformation based on likelihood and gradient," Journal of Global Optimization, Springer, vol. 68(4), pages 827-849, August.
    2. Mohamed Amine Bouhlel & Nathalie Bartoli & Abdelkader Otsmane & Joseph Morlier, 2016. "An Improved Approach for Estimating the Hyperparameters of the Kriging Model for High-Dimensional Problems through the Partial Least Squares Method," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-11, June.
    3. Keshtegar, Behrooz & Mert, Cihan & Kisi, Ozgur, 2018. "Comparison of four heuristic regression techniques in solar radiation modeling: Kriging method vs RSM, MARS and M5 model tree," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 330-341.
    4. Li, Yaohui & Shi, Junjun & Cen, Hui & Shen, Jingfang & Chao, Yanpu, 2021. "A kriging-based adaptive global optimization method with generalized expected improvement and its application in numerical simulation and crop evapotranspiration," Agricultural Water Management, Elsevier, vol. 245(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Camelia Petrescu & Valeriu David, 2022. "Preface to the Special Issue on “Modelling and Simulation in Engineering”," Mathematics, MDPI, vol. 10(14), pages 1-3, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junjun Shi & Jingfang Shen & Yaohui Li, 2021. "High-Precision Kriging Modeling Method Based on Hybrid Sampling Criteria," Mathematics, MDPI, vol. 9(5), pages 1-25, March.
    2. Mostafa Esmaeili Shayan & Gholamhassan Najafi & Barat Ghobadian & Shiva Gorjian & Mohamed Mazlan & Mehdi Samami & Alireza Shabanzadeh, 2022. "Flexible Photovoltaic System on Non-Conventional Surfaces: A Techno-Economic Analysis," Sustainability, MDPI, vol. 14(6), pages 1-14, March.
    3. Feiyan Chen & Zhigao Zhou & Aiwen Lin & Jiqiang Niu & Wenmin Qin & Zhong Yang, 2019. "Evaluation of Direct Horizontal Irradiance in China Using a Physically-Based Model and Machine Learning Methods," Energies, MDPI, vol. 12(1), pages 1-19, January.
    4. Nawin Raj & Zahra Gharineiat, 2021. "Evaluation of Multivariate Adaptive Regression Splines and Artificial Neural Network for Prediction of Mean Sea Level Trend around Northern Australian Coastlines," Mathematics, MDPI, vol. 9(21), pages 1-18, October.
    5. Feng, Yu & Hao, Weiping & Li, Haoru & Cui, Ningbo & Gong, Daozhi & Gao, Lili, 2020. "Machine learning models to quantify and map daily global solar radiation and photovoltaic power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    6. Feng, Lan & Lin, Aiwen & Wang, Lunche & Qin, Wenmin & Gong, Wei, 2018. "Evaluation of sunshine-based models for predicting diffuse solar radiation in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 168-182.
    7. Qin, Wenmin & Wang, Lunche & Lin, Aiwen & Zhang, Ming & Xia, Xiangao & Hu, Bo & Niu, Zigeng, 2018. "Comparison of deterministic and data-driven models for solar radiation estimation in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 579-594.
    8. Liu, Fa & Wang, Xunming & Sun, Fubao & Wang, Hong, 2022. "Correct and remap solar radiation and photovoltaic power in China based on machine learning models," Applied Energy, Elsevier, vol. 312(C).
    9. Krishnan, K V Vishal & Ganguli, Ranjan, 2021. "Multi-fidelity analysis and uncertainty quantification of beam vibration using co-kriging interpolation method," Applied Mathematics and Computation, Elsevier, vol. 398(C).
    10. Fan, Junliang & Wu, Lifeng & Zhang, Fucang & Cai, Huanjie & Zeng, Wenzhi & Wang, Xiukang & Zou, Haiyang, 2019. "Empirical and machine learning models for predicting daily global solar radiation from sunshine duration: A review and case study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 186-212.
    11. Duan, Qiuhua & Feng, Yanxiao & Wang, Julian, 2021. "Clustering of visible and infrared solar irradiance for solar architecture design and analysis," Renewable Energy, Elsevier, vol. 165(P1), pages 668-677.
    12. Li Lu & Yizhong Wu & Qi Zhang & Ping Qiao, 2023. "A Transformation-Based Improved Kriging Method for the Black Box Problem in Reliability-Based Design Optimization," Mathematics, MDPI, vol. 11(1), pages 1-19, January.
    13. Ataee, Sadegh & Ameri, Mehran & Askari, Ighball Baniasad & Keshtegar, Behrooz, 2024. "Evaluation and intelligent forecasting of energy and exergy efficiencies of a nanofluid-based filled-type U-pipe solar ETC using three machine learning approaches," Energy, Elsevier, vol. 298(C).
    14. Kisi, Ozgur & Heddam, Salim & Yaseen, Zaher Mundher, 2019. "The implementation of univariable scheme-based air temperature for solar radiation prediction: New development of dynamic evolving neural-fuzzy inference system model," Applied Energy, Elsevier, vol. 241(C), pages 184-195.
    15. Rana Muhammad Adnan & Salim Heddam & Zaher Mundher Yaseen & Shamsuddin Shahid & Ozgur Kisi & Binquan Li, 2020. "Prediction of Potential Evapotranspiration Using Temperature-Based Heuristic Approaches," Sustainability, MDPI, vol. 13(1), pages 1-21, December.
    16. Kim, Sehyun & Lee, Hyunjae & Kim, Heejin & Jang, Dong-Hwan & Kim, Hyun-Jin & Hur, Jin & Cho, Yoon-Sung & Hur, Kyeon, 2018. "Improvement in policy and proactive interconnection procedure for renewable energy expansion in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 150-162.
    17. Xiaodong Song & Mingyang Li & Zhitao Li & Fang Liu, 2021. "Global Optimization Algorithm Based on Kriging Using Multi-Point Infill Sampling Criterion and Its Application in Transportation System," Sustainability, MDPI, vol. 13(19), pages 1-17, September.
    18. Hai Tao & Isa Ebtehaj & Hossein Bonakdari & Salim Heddam & Cyril Voyant & Nadhir Al-Ansari & Ravinesh Deo & Zaher Mundher Yaseen, 2019. "Designing a New Data Intelligence Model for Global Solar Radiation Prediction: Application of Multivariate Modeling Scheme," Energies, MDPI, vol. 12(7), pages 1-24, April.
    19. Koo, Choongwan & Li, Wenzhuo & Cha, Seung Hyun & Zhang, Shaojie, 2019. "A novel estimation approach for the solar radiation potential with its complex spatial pattern via machine-learning techniques," Renewable Energy, Elsevier, vol. 133(C), pages 575-592.
    20. Li Lu & Yizhong Wu & Qi Zhang & Zhehao Xia & Ping Qiao, 2024. "A response band-based method for time-dependent reliability-based robust design optimization," Journal of Risk and Reliability, , vol. 238(3), pages 559-577, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:16:p:1985-:d:617735. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.