IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i15p3287-d1203039.html
   My bibliography  Save this article

Likelihood Based Inference and Bias Reduction in the Modified Skew-t-Normal Distribution

Author

Listed:
  • Jaime Arrué

    (Departamento de Estadística y Ciencias de Datos, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta 1240000, Chile)

  • Reinaldo B. Arellano-Valle

    (Departamento de Estadística, Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile)

  • Enrique Calderín-Ojeda

    (Centre for Actuarial Studies, Department of Economics, The University of Melbourne, Melbourne, VIC 3010, Australia)

  • Osvaldo Venegas

    (Departamento de Ciencias Matemáticas y Físicas, Facultad de Ingeniería, Universidad de Católica de Temuco, Temuco 4780000, Chile)

  • Héctor W. Gómez

    (Departamento de Estadística y Ciencias de Datos, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta 1240000, Chile)

Abstract

In this paper, likelihood-based inference and bias correction based on Firth’s approach are developed in the modified skew-t-normal (MStN) distribution. The latter model exhibits a greater flexibility than the modified skew-normal (MSN) distribution since it is able to model heavily skewed data and thick tails. In addition, the tails are controlled by the shape parameter and the degrees of freedom. We provide the density of this new distribution and present some of its more important properties including a general expression for the moments. The Fisher’s information matrix together with the observed matrix associated with the log-likelihood are also given. Furthermore, the non-singularity of the Fisher’s information matrix for the MStN model is demonstrated when the shape parameter is zero. As the MStN model presents an inferential problem in the shape parameter, Firth’s method for bias reduction was applied for the scalar case and for the location and scale case.

Suggested Citation

  • Jaime Arrué & Reinaldo B. Arellano-Valle & Enrique Calderín-Ojeda & Osvaldo Venegas & Héctor W. Gómez, 2023. "Likelihood Based Inference and Bias Reduction in the Modified Skew-t-Normal Distribution," Mathematics, MDPI, vol. 11(15), pages 1-21, July.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:15:p:3287-:d:1203039
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/15/3287/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/15/3287/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arellano-Valle, Reinaldo B. & Ferreira, Clécio S. & Genton, Marc G., 2018. "Scale and shape mixtures of multivariate skew-normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 98-110.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiong, Qian & Peng, Zuoxiang, 2020. "Asymptotic expansions of powered skew-normal extremes," Statistics & Probability Letters, Elsevier, vol. 158(C).
    2. Lee, Sharon X. & McLachlan, Geoffrey J., 2022. "An overview of skew distributions in model-based clustering," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    3. Yin, Chuancun & Balakrishnan, Narayanaswamy, 2024. "Stochastic representations and probabilistic characteristics of multivariate skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    4. Hok Shing Kwong & Saralees Nadarajah, 2022. "A New Robust Class of Skew Elliptical Distributions," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1669-1691, September.
    5. Mohammadi, Raziyeh & Kazemi, Iraj, 2022. "A robust linear mixed-effects model for longitudinal data using an innovative multivariate skew-Huber distribution," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    6. Rezaei, Amir & Yousefzadeh, Fatemeh & Arellano-Valle, Reinaldo B., 2020. "Scale and shape mixtures of matrix variate extended skew normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    7. Santos, Fábio Sandro dos & Nascimento, Kerolly Kedma Felix do & Jale, Jader da Silva & Stosic, Tatijana & Marinho, Manoel H.N. & Ferreira, Tiago A.E., 2021. "Mixture distribution and multifractal analysis applied to wind speed in the Brazilian Northeast region," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    8. Baishuai Zuo & Narayanaswamy Balakrishnan & Chuancun Yin, 2023. "An analysis of multivariate measures of skewness and kurtosis of skew-elliptical distributions," Papers 2311.18176, arXiv.org.
    9. Azzalini, Adelchi, 2022. "An overview on the progeny of the skew-normal family— A personal perspective," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    10. Wan-Lun Wang & Ahad Jamalizadeh & Tsung-I Lin, 2020. "Finite mixtures of multivariate scale-shape mixtures of skew-normal distributions," Statistical Papers, Springer, vol. 61(6), pages 2643-2670, December.
    11. Abbas Mahdavi & Vahid Amirzadeh & Ahad Jamalizadeh & Tsung-I Lin, 2021. "Maximum likelihood estimation for scale-shape mixtures of flexible generalized skew normal distributions via selection representation," Computational Statistics, Springer, vol. 36(3), pages 2201-2230, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:15:p:3287-:d:1203039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.