IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i15p3266-d1202043.html
   My bibliography  Save this article

Economic Power Dispatch of a Grid-Tied Photovoltaic-Based Energy Management System: Co-Optimization Approach

Author

Listed:
  • Olukorede Tijani Adenuga

    (Department of Electrical, Electronic and Computer Engineering, Cape Peninsula University of Technology, Bellville, Cape Town 7535, South Africa)

  • Senthil Krishnamurthy

    (Department of Electrical, Electronic and Computer Engineering, Cape Peninsula University of Technology, Bellville, Cape Town 7535, South Africa)

Abstract

The requirement for the integration of power plants due to the cyclical rise in electrical energy consumption is due to the fluctuating load demand experienced with the current grid systems. This integration necessitates effectively allocating loads to the power plants for a minimum grid-tied transmission line cost, while meeting the network constraints. In this paper, we formulate an optimization problem of minimizing the total operational cost of all committed plants transmitted to the grid, while also meeting the network constraints and ensuring economic power dispatch (EPD) and energy management system co-optimization. The developed particle swarm optimization (PSO) method resolves the optimization problem using a piecewise quadratic function to describe the operational cost of the generation units, and the B coefficient approach is employed to estimate the transmission losses. Intelligent adjustments are made to the acceleration coefficients, and a brand-new algorithm is suggested for distributing the initial power values to the generation units. The developed economic power dispatch strategy successfully demonstrated an imperative cost reduction, with a connected load of 850 MW, 1263 MW, and 2630 MW of power demand, contrasted with previous PSO application cost values percentage, maximum yearly cost savings of (0.55%, 91.87), (46.55%, 3.78), and (73.86%, 89.10), respectively, and significant environmental benefits. The proposed co-optimization approach can significantly enhance the self-consumption ratio compared to the baseline method.

Suggested Citation

  • Olukorede Tijani Adenuga & Senthil Krishnamurthy, 2023. "Economic Power Dispatch of a Grid-Tied Photovoltaic-Based Energy Management System: Co-Optimization Approach," Mathematics, MDPI, vol. 11(15), pages 1-22, July.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:15:p:3266-:d:1202043
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/15/3266/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/15/3266/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohammad Lotfi Akbarabadi & Reza Sirjani, 2023. "Achieving Sustainability and Cost-Effectiveness in Power Generation: Multi-Objective Dispatch of Solar, Wind, and Hydro Units," Sustainability, MDPI, vol. 15(3), pages 1-33, January.
    2. Ma, Chao & Liu, Lu, 2022. "Optimal capacity configuration of hydro-wind-PV hybrid system and its coordinative operation rules considering the UHV transmission and reservoir operation requirements," Renewable Energy, Elsevier, vol. 198(C), pages 637-653.
    3. Sridhar Vavilapalli & Sanjeevikumar Padmanaban & Umashankar Subramaniam & Lucian Mihet-Popa, 2017. "Power Balancing Control for Grid Energy Storage System in Photovoltaic Applications—Real Time Digital Simulation Implementation," Energies, MDPI, vol. 10(7), pages 1-22, July.
    4. Hlalele, Thabo G. & Zhang, Jiangfeng & Naidoo, Raj M. & Bansal, Ramesh C., 2021. "Multi-objective economic dispatch with residential demand response programme under renewable obligation," Energy, Elsevier, vol. 218(C).
    5. David Rebollal & Mónica Chinchilla & David Santos-Martín & Josep M. Guerrero, 2021. "Endogenous Approach of a Frequency-Constrained Unit Commitment in Islanded Microgrid Systems," Energies, MDPI, vol. 14(19), pages 1-22, October.
    6. Abedini, Mohammad & Moradi, Mohammad H. & Hosseinian, S. Mahdi, 2016. "Optimal management of microgrids including renewable energy scources using GPSO-GM algorithm," Renewable Energy, Elsevier, vol. 90(C), pages 430-439.
    7. Baziar, Aliasghar & Kavousi-Fard, Abdollah, 2013. "Considering uncertainty in the optimal energy management of renewable micro-grids including storage devices," Renewable Energy, Elsevier, vol. 59(C), pages 158-166.
    8. Gribkovskaia, Victoria, 2015. "Peak price hours in the Nordic power market winter 2009/2010: effects of pricing, demand elasticity and transmission capacities," Discussion Papers 2015/9, Norwegian School of Economics, Department of Business and Management Science.
    9. Yudong Zhang & Shuihua Wang & Genlin Ji, 2015. "A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-38, October.
    10. Vyas, Maharshi & Chowdhury, Sumit & Verma, Abhishek & Jain, V.K., 2022. "Solar Photovoltaic Tree: Urban PV power plants to increase power to land occupancy ratio," Renewable Energy, Elsevier, vol. 190(C), pages 283-293.
    11. Stoppato, Anna & Cavazzini, Giovanna & Ardizzon, Guido & Rossetti, Antonio, 2014. "A PSO (particle swarm optimization)-based model for the optimal management of a small PV(Photovoltaic)-pump hydro energy storage in a rural dry area," Energy, Elsevier, vol. 76(C), pages 168-174.
    12. Zeng, Bo & Feng, Jiahuan & Zhang, Jianhua & Liu, Zongqi, 2017. "An optimal integrated planning method for supporting growing penetration of electric vehicles in distribution systems," Energy, Elsevier, vol. 126(C), pages 273-284.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi, Yunying & Xu, Xiao & Liu, Youbo & Pan, Li & Liu, Junyong & Hu, Weihao, 2024. "Intelligent energy management for an on-grid hydrogen refueling station based on dueling double deep Q network algorithm with NoisyNet," Renewable Energy, Elsevier, vol. 222(C).
    2. Solanke, Tirupati U. & Khatua, Pradeep K. & Ramachandaramurthy, Vigna K. & Yong, Jia Ying & Tan, Kang Miao, 2021. "Control and management of a multilevel electric vehicles infrastructure integrated with distributed resources: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    3. Fontenot, Hannah & Dong, Bing, 2019. "Modeling and control of building-integrated microgrids for optimal energy management – A review," Applied Energy, Elsevier, vol. 254(C).
    4. de la Hoz, Jordi & Martín, Helena & Alonso, Alex & Carolina Luna, Adriana & Matas, José & Vasquez, Juan C. & Guerrero, Josep M., 2019. "Regulatory-framework-embedded energy management system for microgrids: The case study of the Spanish self-consumption scheme," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Zia, Muhammad Fahad & Elbouchikhi, Elhoussin & Benbouzid, Mohamed, 2018. "Microgrids energy management systems: A critical review on methods, solutions, and prospects," Applied Energy, Elsevier, vol. 222(C), pages 1033-1055.
    6. Haddadian, Hossein & Noroozian, Reza, 2017. "Optimal operation of active distribution systems based on microgrid structure," Renewable Energy, Elsevier, vol. 104(C), pages 197-210.
    7. Mousavi, Navid & Kothapalli, Ganesh & Habibi, Daryoush & Das, Choton K. & Baniasadi, Ali, 2020. "A novel photovoltaic-pumped hydro storage microgrid applicable to rural areas," Applied Energy, Elsevier, vol. 262(C).
    8. Wen, Xin & Abbes, Dhaker & Francois, Bruno, 2021. "Modeling of photovoltaic power uncertainties for impact analysis on generation scheduling and cost of an urban micro grid," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 183(C), pages 116-128.
    9. Lei Chen & Xiude Tu & Hongkun Chen & Jun Yang & Yayi Wu & Xin Shu & Li Ren, 2016. "Technical Evaluation of Superconducting Fault Current Limiters Used in a Micro-Grid by Considering the Fault Characteristics of Distributed Generation, Energy Storage and Power Loads," Energies, MDPI, vol. 9(10), pages 1-21, September.
    10. Sheng, Wanxing & Li, Rui & Yan, Tao & Tseng, Ming-Lang & Lou, Jiale & Li, Lingling, 2023. "A hybrid dynamic economics emissions dispatch model: Distributed renewable power systems based on improved COOT optimization algorithm," Renewable Energy, Elsevier, vol. 204(C), pages 493-506.
    11. Mariusz Korzeń & Maciej Kruszyna, 2023. "Modified Ant Colony Optimization as a Means for Evaluating the Variants of the City Railway Underground Section," IJERPH, MDPI, vol. 20(6), pages 1-15, March.
    12. Cheng, Qian & Liu, Pan & Xia, Qian & Cheng, Lei & Ming, Bo & Zhang, Wei & Xu, Weifeng & Zheng, Yalian & Han, Dongyang & Xia, Jun, 2023. "An analytical method to evaluate curtailment of hydro–photovoltaic hybrid energy systems and its implication under climate change," Energy, Elsevier, vol. 278(C).
    13. Zhao, Bo & Xue, Meidong & Zhang, Xuesong & Wang, Caisheng & Zhao, Junhui, 2015. "An MAS based energy management system for a stand-alone microgrid at high altitude," Applied Energy, Elsevier, vol. 143(C), pages 251-261.
    14. Ben Christopher, S.J. & Carolin Mabel, M., 2020. "A bio-inspired approach for probabilistic energy management of micro-grid incorporating uncertainty in statistical cost estimation," Energy, Elsevier, vol. 203(C).
    15. Kumar Jadoun, Vinay & Rahul Prashanth, G & Suhas Joshi, Siddharth & Narayanan, K. & Malik, Hasmat & García Márquez, Fausto Pedro, 2022. "Optimal fuzzy based economic emission dispatch of combined heat and power units using dynamically controlled Whale Optimization Algorithm," Applied Energy, Elsevier, vol. 315(C).
    16. Weitzel, Timm & Glock, Christoph H., 2018. "Energy management for stationary electric energy storage systems: A systematic literature review," European Journal of Operational Research, Elsevier, vol. 264(2), pages 582-606.
    17. Mofid, Hossein & Jazayeri-Rad, Hooshang & Shahbazian, Mehdi & Fetanat, Abdolvahhab, 2019. "Enhancing the performance of a parallel nitrogen expansion liquefaction process (NELP) using the multi-objective particle swarm optimization (MOPSO) algorithm," Energy, Elsevier, vol. 172(C), pages 286-303.
    18. Mohammad Soleimani Amiri & Rizauddin Ramli & Ahmad Barari, 2023. "Optimally Initialized Model Reference Adaptive Controller of Wearable Lower Limb Rehabilitation Exoskeleton," Mathematics, MDPI, vol. 11(7), pages 1-14, March.
    19. Xu, Fangyuan & Zhu, Weidong & Wang, Yi Fei & Lai, Chun Sing & Yuan, Haoliang & Zhao, Yujia & Guo, Siming & Fu, Zhengxin, 2022. "A new deregulated demand response scheme for load over-shifting city in regulated power market," Applied Energy, Elsevier, vol. 311(C).
    20. Zhang, Rongda & Wei, Jing & Zhao, Xiaoli & Liu, Yang, 2022. "Economic and environmental benefits of the integration between carbon sequestration and underground gas storage," Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:15:p:3266-:d:1202043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.