IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v266y2015icp698-712.html
   My bibliography  Save this article

Almost sure exponential stability of numerical solutions to stochastic delay Hopfield neural networks

Author

Listed:
  • Liu, Linna
  • Zhu, Quanxin

Abstract

Stability of numerical solutions to stochastic delay differential equations have received an increasing attention, but there has been so far little work on the stability analysis of numerical solutions to stochastic delay Hopfield neural networks. The aim of this paper is to study the almost sure exponential stability of numerical solutions to stochastic delay Hopfield neural networks by using two approaches: the Euler method and the backward Euler method. Under some reasonable conditions, both the Euler scheme and the backward Euler scheme are proved to be almost sure exponential stability. In particular, the Euler method and the backward Euler method are mainly based on the semimartingale convergence theorem.

Suggested Citation

  • Liu, Linna & Zhu, Quanxin, 2015. "Almost sure exponential stability of numerical solutions to stochastic delay Hopfield neural networks," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 698-712.
  • Handle: RePEc:eee:apmaco:v:266:y:2015:i:c:p:698-712
    DOI: 10.1016/j.amc.2015.05.134
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315007651
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.05.134?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Guihua & Song, Minghui & Yang, Zhanwen, 2015. "Mean-square stability of analytic solution and Euler–Maruyama method for impulsive stochastic differential equations," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 527-538.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rathinasamy, Anandaraman & Mayavel, Pichamuthu, 2023. "Strong convergence and almost sure exponential stability of balanced numerical approximations to stochastic delay Hopfield neural networks," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    2. Zhifu Jia & Cunlin Li, 2023. "Almost Sure Exponential Stability of Uncertain Stochastic Hopfield Neural Networks Based on Subadditive Measures," Mathematics, MDPI, vol. 11(14), pages 1-19, July.
    3. Wan, Li & Zhou, Qinghua & Liu, Jie, 2017. "Delay-dependent attractor analysis of Hopfield neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 101(C), pages 68-72.
    4. Nie, Rencan & Cao, Jinde & Zhou, Dongming & Qian, Wenhua, 2019. "Analysis of pulse period for passive neuron in pulse coupled neural network," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 277-289.
    5. Rathinasamy, A. & Narayanasamy, J., 2019. "Mean square stability and almost sure exponential stability of two step Maruyama methods of stochastic delay Hopfield neural networks," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 126-152.
    6. Rathinasamy, Anandaraman & Mayavel, Pichamuthu, 2023. "The balanced split step theta approximations of stochastic neutral Hopfield neural networks with time delay and Poisson jumps," Applied Mathematics and Computation, Elsevier, vol. 455(C).
    7. Tan, Jianguo & Tan, Yahua & Guo, Yongfeng & Feng, Jianfeng, 2020. "Almost sure exponential stability of numerical solutions for stochastic delay Hopfield neural networks with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu Zhang & Enying Zhang & Longsuo Li, 2022. "The Improved Stability Analysis of Numerical Method for Stochastic Delay Differential Equations," Mathematics, MDPI, vol. 10(18), pages 1-7, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:266:y:2015:i:c:p:698-712. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.