IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i14p3088-d1193020.html
   My bibliography  Save this article

A Comparison between Explainable Machine Learning Methods for Classification and Regression Problems in the Actuarial Context

Author

Listed:
  • Catalina Lozano-Murcia

    (Department of Information Systems and Technologies, University of Castilla La Mancha, 13071 Ciudad Real, Spain
    Master Program in Actuarial Science, Escuela Colombiana de Ingeniería Julio Garavito, Bogota D.C. 205, Colombia
    Current address: School of Computer Engineering, University of Castilla La Mancha, Paseo de la Universidad, 4, 13071 Ciudad Real, Spain.)

  • Francisco P. Romero

    (Department of Information Systems and Technologies, University of Castilla La Mancha, 13071 Ciudad Real, Spain)

  • Jesus Serrano-Guerrero

    (Department of Information Systems and Technologies, University of Castilla La Mancha, 13071 Ciudad Real, Spain)

  • Jose A. Olivas

    (Department of Information Systems and Technologies, University of Castilla La Mancha, 13071 Ciudad Real, Spain)

Abstract

Machine learning, a subfield of artificial intelligence, emphasizes the creation of algorithms capable of learning from data and generating predictions. However, in actuarial science, the interpretability of these models often presents challenges, raising concerns about their accuracy and reliability. Explainable artificial intelligence (XAI) has emerged to address these issues by facilitating the development of accurate and comprehensible models. This paper conducts a comparative analysis of various XAI approaches for tackling distinct data-driven insurance problems. The machine learning methods are evaluated based on their accuracy, employing the mean absolute error for regression problems and the accuracy metric for classification problems. Moreover, the interpretability of these methods is assessed through quantitative and qualitative measures of the explanations offered by each explainability technique. The findings reveal that the performance of different XAI methods varies depending on the particular insurance problem at hand. Our research underscores the significance of considering accuracy and interpretability when selecting a machine-learning approach for resolving data-driven insurance challenges. By developing accurate and comprehensible models, we can enhance the transparency and trustworthiness of the predictions generated by these models.

Suggested Citation

  • Catalina Lozano-Murcia & Francisco P. Romero & Jesus Serrano-Guerrero & Jose A. Olivas, 2023. "A Comparison between Explainable Machine Learning Methods for Classification and Regression Problems in the Actuarial Context," Mathematics, MDPI, vol. 11(14), pages 1-20, July.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:14:p:3088-:d:1193020
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/14/3088/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/14/3088/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vladislav N. Kovalnogov & Ruslan V. Fedorov & Dmitry A. Generalov & Andrey V. Chukalin & Vasilios N. Katsikis & Spyridon D. Mourtas & Theodore E. Simos, 2022. "Portfolio Insurance through Error-Correction Neural Networks," Mathematics, MDPI, vol. 10(18), pages 1-14, September.
    2. Roel Henckaerts & Marie-Pier Côté & Katrien Antonio & Roel Verbelen, 2021. "Boosting Insights in Insurance Tariff Plans with Tree-Based Machine Learning Methods," North American Actuarial Journal, Taylor & Francis Journals, vol. 25(2), pages 255-285, April.
    3. Christopher Blier-Wong & Hélène Cossette & Luc Lamontagne & Etienne Marceau, 2020. "Machine Learning in P&C Insurance: A Review for Pricing and Reserving," Risks, MDPI, vol. 9(1), pages 1-26, December.
    4. Shapiro, Arnold F., 2004. "Fuzzy logic in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 399-424, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fatma M. Talaat & Abdussalam Aljadani & Bshair Alharthi & Mohammed A. Farsi & Mahmoud Badawy & Mostafa Elhosseini, 2023. "A Mathematical Model for Customer Segmentation Leveraging Deep Learning, Explainable AI, and RFM Analysis in Targeted Marketing," Mathematics, MDPI, vol. 11(18), pages 1-26, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yaojun & Ji, Lanpeng & Aivaliotis, Georgios & Taylor, Charles, 2024. "Bayesian CART models for insurance claims frequency," Insurance: Mathematics and Economics, Elsevier, vol. 114(C), pages 108-131.
    2. Jelena Lukić & Mirjana Misita & Dragan D. Milanović & Ankica Borota-Tišma & Aleksandra Janković, 2022. "Determining the Risk Level in Client Analysis by Applying Fuzzy Logic in Insurance Sector," Mathematics, MDPI, vol. 10(18), pages 1-17, September.
    3. de Andres-Sanchez, Jorge, 2007. "Claim reserving with fuzzy regression and Taylor's geometric separation method," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 145-163, January.
    4. David Opresnik & Maurizio Fiasché & Marco Taisch & Manuel Hirsch, 0. "An evolving fuzzy inference system for extraction of rule set for planning a product–service strategy," Information Technology and Management, Springer, vol. 0, pages 1-17.
    5. Xingyuan Li & Chia-Liang Lin & Theodore E. Simos & Spyridon D. Mourtas & Vasilios N. Katsikis, 2022. "Computation of Time-Varying {2,3}- and {2,4}-Inverses through Zeroing Neural Networks," Mathematics, MDPI, vol. 10(24), pages 1-13, December.
    6. Houssem Jerbi & Obaid Alshammari & Sondess Ben Aoun & Mourad Kchaou & Theodore E. Simos & Spyridon D. Mourtas & Vasilios N. Katsikis, 2023. "Hermitian Solutions of the Quaternion Algebraic Riccati Equations through Zeroing Neural Networks with Application to Quadrotor Control," Mathematics, MDPI, vol. 12(1), pages 1-19, December.
    7. Koissi, Marie-Claire & Shapiro, Arnold F., 2006. "Fuzzy formulation of the Lee-Carter model for mortality forecasting," Insurance: Mathematics and Economics, Elsevier, vol. 39(3), pages 287-309, December.
    8. Thomas Poufinas & Periklis Gogas & Theophilos Papadimitriou & Emmanouil Zaganidis, 2023. "Machine Learning in Forecasting Motor Insurance Claims," Risks, MDPI, vol. 11(9), pages 1-19, September.
    9. Lai, Li-Hua, 2008. "An evaluation of fuzzy transportation underwriting systematic risk," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(9), pages 1231-1237, November.
    10. Li-Hua Lai, 2006. "Underwriting profit margin of P/L insurance in the fuzzy-ICAPM," The Geneva Papers on Risk and Insurance Theory, Springer;International Association for the Study of Insurance Economics (The Geneva Association), vol. 31(1), pages 23-34, July.
    11. Daniela Ungureanu & Raluca Vernic, 2015. "On a fuzzy cash flow model with insurance applications," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 38(1), pages 39-54, April.
    12. Luukka, Pasi & Collan, Mikael, 2015. "New fuzzy insurance pricing method for giga-investment project insurance," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 22-29.
    13. Gu, Zheng & Li, Yunxian & Zhang, Minghui & Liu, Yifei, 2023. "Modelling economic losses from earthquakes using regression forests: Application to parametric insurance," Economic Modelling, Elsevier, vol. 125(C).
    14. Dalkilic, Turkan Erbay & Tank, Fatih & Kula, Kamile Sanli, 2009. "Neural networks approach for determining total claim amounts in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 45(2), pages 236-241, October.
    15. de Andrés-Sánchez, Jorge & González-Vila Puchades, Laura, 2017. "The valuation of life contingencies: A symmetrical triangular fuzzy approximation," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 83-94.
    16. Jean-Thomas Baillargeon & Luc Lamontagne & Etienne Marceau, 2020. "Mining Actuarial Risk Predictors in Accident Descriptions Using Recurrent Neural Networks," Risks, MDPI, vol. 9(1), pages 1-14, December.
    17. Belles-Sampera, Jaume & Merigó, José M. & Guillén, Montserrat & Santolino, Miguel, 2013. "The connection between distortion risk measures and ordered weighted averaging operators," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 411-420.
    18. Zhiyu Quan & Changyue Hu & Panyi Dong & Emiliano A. Valdez, 2024. "Improving Business Insurance Loss Models by Leveraging InsurTech Innovation," Papers 2401.16723, arXiv.org.
    19. Demirel, Duygun Fatih & Basak, Melek, 2019. "A fuzzy bi-level method for modeling age-specific migration," Socio-Economic Planning Sciences, Elsevier, vol. 68(C).
    20. Sadefo Kamdem, J. & Mbairadjim Moussa, A. & Terraza, M., 2012. "Fuzzy risk adjusted performance measures: Application to hedge funds," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 702-712.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:14:p:3088-:d:1193020. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.