IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v9y2020i1p7-d469884.html
   My bibliography  Save this article

Mining Actuarial Risk Predictors in Accident Descriptions Using Recurrent Neural Networks

Author

Listed:
  • Jean-Thomas Baillargeon

    (Department of Computer Science and Software Engineering, Université Laval, Québec, QC G1V 0A6, Canada)

  • Luc Lamontagne

    (Department of Computer Science and Software Engineering, Université Laval, Québec, QC G1V 0A6, Canada)

  • Etienne Marceau

    (School of Actuarial Science, Université Laval, Québec, QC G1V 0A6, Canada)

Abstract

One crucial task of actuaries is to structure data so that observed events are explained by their inherent risk factors. They are proficient at generalizing important elements to obtain useful forecasts. Although this expertise is beneficial when paired with conventional statistical models, it becomes limited when faced with massive unstructured datasets. Moreover, it does not take profit from the representation capabilities of recent machine learning algorithms. In this paper, we present an approach to automatically extract textual features from a large corpus that departs from the traditional actuarial approach. We design a neural architecture that can be trained to predict a phenomenon using words represented as dense embeddings. We then extract features identified as important by the model to assess the relationship between the words and the phenomenon. The technique is illustrated through a case study that estimates the number of cars involved in an accident using the accident’s description as input to a Poisson regression model. We show that our technique yields models that are more performing and interpretable than some usual actuarial data mining baseline.

Suggested Citation

  • Jean-Thomas Baillargeon & Luc Lamontagne & Etienne Marceau, 2020. "Mining Actuarial Risk Predictors in Accident Descriptions Using Recurrent Neural Networks," Risks, MDPI, vol. 9(1), pages 1-14, December.
  • Handle: RePEc:gam:jrisks:v:9:y:2020:i:1:p:7-:d:469884
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/9/1/7/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/9/1/7/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christopher Blier-Wong & Hélène Cossette & Luc Lamontagne & Etienne Marceau, 2020. "Machine Learning in P&C Insurance: A Review for Pricing and Reserving," Risks, MDPI, vol. 9(1), pages 1-26, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zuleyka Díaz Martínez & José Fernández Menéndez & Luis Javier García Villalba, 2023. "Tariff Analysis in Automobile Insurance: Is It Time to Switch from Generalized Linear Models to Generalized Additive Models?," Mathematics, MDPI, vol. 11(18), pages 1-16, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yaojun Zhang & Lanpeng Ji & Georgios Aivaliotis & Charles Taylor, 2023. "Bayesian CART models for insurance claims frequency," Papers 2303.01923, arXiv.org, revised Dec 2023.
    2. Tanut Treetanthiploet & Yufei Zhang & Lukasz Szpruch & Isaac Bowers-Barnard & Henrietta Ridley & James Hickey & Chris Pearce, 2023. "Insurance pricing on price comparison websites via reinforcement learning," Papers 2308.06935, arXiv.org.
    3. Shengkun Xie & Rebecca Luo, 2022. "Measuring Variable Importance in Generalized Linear Models for Modeling Size of Loss Distributions," Mathematics, MDPI, vol. 10(10), pages 1-19, May.
    4. Catalina Lozano-Murcia & Francisco P. Romero & Jesus Serrano-Guerrero & Jose A. Olivas, 2023. "A Comparison between Explainable Machine Learning Methods for Classification and Regression Problems in the Actuarial Context," Mathematics, MDPI, vol. 11(14), pages 1-20, July.
    5. Lukasz Szpruch & Tanut Treetanthiploet & Yufei Zhang, 2024. "$\epsilon$-Policy Gradient for Online Pricing," Papers 2405.03624, arXiv.org.
    6. Zhang, Yaojun & Ji, Lanpeng & Aivaliotis, Georgios & Taylor, Charles, 2024. "Bayesian CART models for insurance claims frequency," Insurance: Mathematics and Economics, Elsevier, vol. 114(C), pages 108-131.
    7. Shengkun Xie & Kun Shi, 2023. "Generalised Additive Modelling of Auto Insurance Data with Territory Design: A Rate Regulation Perspective," Mathematics, MDPI, vol. 11(2), pages 1-24, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:9:y:2020:i:1:p:7-:d:469884. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.