IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i13p2928-d1183362.html
   My bibliography  Save this article

On Sub Convexlike Optimization Problems

Author

Listed:
  • Renying Zeng

    (Mathematics Department, Saskatchewan Polytechnic, Saskatoon, SK S7L 4J7, Canada)

Abstract

In this paper, we show that the sub convexlikeness and subconvexlikeness defined by V. Jeyakumar are equivalent in locally convex topological spaces. We also deal with set-valued vector optimization problems and obtained vector saddle-point theorems and vector Lagrangian theorems.

Suggested Citation

  • Renying Zeng, 2023. "On Sub Convexlike Optimization Problems," Mathematics, MDPI, vol. 11(13), pages 1-14, June.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:13:p:2928-:d:1183362
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/13/2928/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/13/2928/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhi-Ang Zhou & Jian-Wen Peng, 2012. "A Generalized Alternative Theorem of Partial and Generalized Cone Subconvexlike Set-Valued Maps and Its Applications in Linear Spaces," Journal of Applied Mathematics, Hindawi, vol. 2012, pages 1-9, October.
    2. Yu Zhou & Jin Zhou & Xiao Yang, 2014. "Existence of augmented Lagrange multipliers for cone constrained optimization problems," Journal of Global Optimization, Springer, vol. 58(2), pages 243-260, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. V. Dolgopolik, 2018. "Augmented Lagrangian functions for cone constrained optimization: the existence of global saddle points and exact penalty property," Journal of Global Optimization, Springer, vol. 71(2), pages 237-296, June.
    2. M. V. Dolgopolik, 2018. "A Unified Approach to the Global Exactness of Penalty and Augmented Lagrangian Functions I: Parametric Exactness," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 728-744, March.
    3. R. S. Burachik & X. Q. Yang & Y. Y. Zhou, 2017. "Existence of Augmented Lagrange Multipliers for Semi-infinite Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 173(2), pages 471-503, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:13:p:2928-:d:1183362. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.