IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i13p2833-d1178129.html
   My bibliography  Save this article

Advance Landslide Prediction and Warning Model Based on Stacking Fusion Algorithm

Author

Listed:
  • Zian Lin

    (School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin 541004, China)

  • Yuanfa Ji

    (Information and Communication School, Guilin University of Electronic Technology, Guilin 541004, China)

  • Xiyan Sun

    (Information and Communication School, Guilin University of Electronic Technology, Guilin 541004, China)

Abstract

In landslide disaster warning, a variety of monitoring and warning methods are commonly adopted. However, most monitoring and warning methods cannot provide information in advance, and serious losses are often caused when landslides occur. To advance the warning time before a landslide, an innovative advance landslide prediction and warning model based on a stacking fusion algorithm using Baishuihe landslide data is proposed in this paper. The Baishuihe landslide area is characterized by unique soil and is in the Three Gorges region of China, with a subtropical monsoon climate. Based on Baishuihe historical data and real-time monitoring of the landslide state, four warning level thresholds and trigger conditions for each warning level are established. The model effectively integrates the results of multiple prediction and warning submodels to provide predictions and advance warnings through the fusion of two stacking learning layers. The possibility that a risk priority strategy can be used as a substitute for the stacking model is also discussed. Finally, an experimental simulation verifies that the proposed improved model can not only provide advance landslide warning but also effectively reduce the frequency of false warnings and mitigate the issues of traditional single models. The stacking model can effectively support disaster prevention and reduction and provide a scientific basis for land use management.

Suggested Citation

  • Zian Lin & Yuanfa Ji & Xiyan Sun, 2023. "Advance Landslide Prediction and Warning Model Based on Stacking Fusion Algorithm," Mathematics, MDPI, vol. 11(13), pages 1-20, June.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:13:p:2833-:d:1178129
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/13/2833/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/13/2833/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiang Wang & Shen Gao & Yibin Guo & Shiyu Zhou & Yonghui Duan & Daqing Wu & Ning Cai, 2022. "A Combined Prediction Model for Hog Futures Prices Based on WOA-LightGBM-CEEMDAN," Complexity, Hindawi, vol. 2022, pages 1-15, February.
    2. Xiangqian Wang & Ningke Xu & Xiangrui Meng & Haoqian Chang, 2022. "Prediction of Gas Concentration Based on LSTM-LightGBM Variable Weight Combination Model," Energies, MDPI, vol. 15(3), pages 1-17, January.
    3. Mohammed A. Bou-Rabee & Muhammad Yasin Naz & Imad ED. Albalaa & Shaharin Anwar Sulaiman, 2022. "BiLSTM Network-Based Approach for Solar Irradiance Forecasting in Continental Climate Zones," Energies, MDPI, vol. 15(6), pages 1-12, March.
    4. Zian Lin & Xiyan Sun & Yuanfa Ji, 2022. "Landslide Displacement Prediction Based on Time Series Analysis and Double-BiLSTM Model," IJERPH, MDPI, vol. 19(4), pages 1-23, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zian Lin & Yuanfa Ji & Xiyan Sun, 2023. "Landslide Displacement Prediction Based on CEEMDAN Method and CNN–BiLSTM Model," Sustainability, MDPI, vol. 15(13), pages 1-20, June.
    2. Xinyu Yang & Ying Ji & Xiaoxia Wang & Menghan Niu & Shuijing Long & Jingchao Xie & Yuying Sun, 2023. "Simplified Method for Predicting Hourly Global Solar Radiation Using Extraterrestrial Radiation and Limited Weather Forecast Parameters," Energies, MDPI, vol. 16(7), pages 1-16, April.
    3. Yuxin Huang & Jingdao Fan & Zhenguo Yan & Shugang Li & Yanping Wang, 2022. "A Gas Concentration Prediction Method Driven by a Spark Streaming Framework," Energies, MDPI, vol. 15(15), pages 1-13, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:13:p:2833-:d:1178129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.