IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i12p2783-d1175498.html
   My bibliography  Save this article

A New Visualization and Analysis Method for a Convolved Representation of Mass Computational Experiments with Biological Models

Author

Listed:
  • Alexandra I. Klimenko

    (Systems Biology Department, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Lavrentiev Avenue 10, 630090 Novosibirsk, Russia
    Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Lavrentiev Avenue 10, 630090 Novosibirsk, Russia
    These authors contributed equally to this work.)

  • Diana A. Vorobeva

    (Mathematics and Mechanics Department, Novosibirsk State University, Pirogova St. 1, 630090 Novosibirsk, Russia
    These authors contributed equally to this work.)

  • Sergey A. Lashin

    (Systems Biology Department, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Lavrentiev Avenue 10, 630090 Novosibirsk, Russia
    Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Lavrentiev Avenue 10, 630090 Novosibirsk, Russia
    Natural Science Department, Novosibirsk State University, Pirogova St. 1, 630090 Novosibirsk, Russia)

Abstract

Modern computational biology makes widespread use of mathematical models of biological systems, in particular systems of ordinary differential equations, as well as models of dynamic systems described in other formalisms, such as agent-based models. Parameters are numerical values of quantities reflecting certain properties of a modeled system and affecting model solutions. At the same time, depending on parameter values, different dynamic regimes—stationary or oscillatory, established as a result of transient modes of various types—can be observed in the modeled system. Predicting changes in the solution dynamics type depending on changes in model parameters is an important scientific task. Nevertheless, this problem does not have an analytical solution for all formalisms in a general case. The routinely used method of performing a series of computational experiments, i.e., solving a series of direct problems with various sets of parameters followed by expert analysis of solution plots is labor-intensive with a large number of parameters and a decreasing step of the parametric grid. In this regard, the development of methods allowing the obtainment and analysis of information on a set of computational experiments in an aggregate form is relevant. This work is devoted to developing a method for the visualization and classification of various dynamic regimes of a model using a composition of the dynamic time warping (DTW-algorithm) and principal coordinates analysis (PCoA) methods. This method enables qualitative visualization of the results of the set of solutions of a mathematical model and the performance of the correspondence between the values of the model parameters and the type of dynamic regimes of its solutions. This method has been tested on the Lotka–Volterra model and artificial sets of various dynamics.

Suggested Citation

  • Alexandra I. Klimenko & Diana A. Vorobeva & Sergey A. Lashin, 2023. "A New Visualization and Analysis Method for a Convolved Representation of Mass Computational Experiments with Biological Models," Mathematics, MDPI, vol. 11(12), pages 1-19, June.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:12:p:2783-:d:1175498
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/12/2783/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/12/2783/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giorgino, Toni, 2009. "Computing and Visualizing Dynamic Time Warping Alignments in R: The dtw Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 31(i07).
    2. Ayllón, Daniel & Railsback, Steven F. & Vincenzi, Simone & Groeneveld, Jürgen & Almodóvar, Ana & Grimm, Volker, 2016. "InSTREAM-Gen: Modelling eco-evolutionary dynamics of trout populations under anthropogenic environmental change," Ecological Modelling, Elsevier, vol. 326(C), pages 36-53.
    3. Jan C. Thiele & Winfried Kurth & Volker Grimm, 2014. "Facilitating Parameter Estimation and Sensitivity Analysis of Agent-Based Models: A Cookbook Using NetLogo and 'R'," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 17(3), pages 1-11.
    4. Colléter, Mathieu & Valls, Audrey & Guitton, Jérôme & Gascuel, Didier & Pauly, Daniel & Christensen, Villy, 2015. "Global overview of the applications of the Ecopath with Ecosim modeling approach using the EcoBase models repository," Ecological Modelling, Elsevier, vol. 302(C), pages 42-53.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grimm, Volker & Berger, Uta, 2016. "Robustness analysis: Deconstructing computational models for ecological theory and applications," Ecological Modelling, Elsevier, vol. 326(C), pages 162-167.
    2. Grimm, Volker & Berger, Uta, 2016. "Structural realism, emergence, and predictions in next-generation ecological modelling: Synthesis from a special issue," Ecological Modelling, Elsevier, vol. 326(C), pages 177-187.
    3. Drechsler, Martin & Wätzold, Frank & Grimm, Volker, 2022. "The hitchhiker's guide to generic ecological-economic modelling of land-use-based biodiversity conservation policies," Ecological Modelling, Elsevier, vol. 465(C).
    4. Dick, D.D.C. & Ayllón, D., 2017. "FloMan-MF: Floodplain Management for the Moor Frog − a simulation model for amphibian conservation in dynamic wetlands," Ecological Modelling, Elsevier, vol. 348(C), pages 110-124.
    5. Amato, Umberto & Antoniadis, Anestis & De Feis, Italia & Goude, Yannig & Lagache, Audrey, 2021. "Forecasting high resolution electricity demand data with additive models including smooth and jagged components," International Journal of Forecasting, Elsevier, vol. 37(1), pages 171-185.
    6. Mastroeni, Loretta & Mazzoccoli, Alessandro & Quaresima, Greta & Vellucci, Pierluigi, 2021. "Decoupling and recoupling in the crude oil price benchmarks: An investigation of similarity patterns," Energy Economics, Elsevier, vol. 94(C).
    7. Lorscheid, Iris & Meyer, Matthias, 2016. "Divide and conquer: Configuring submodels for valid and efficient analyses of complex simulation models," Ecological Modelling, Elsevier, vol. 326(C), pages 152-161.
    8. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    9. Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2017. "Validation of Agent-Based Models in Economics and Finance," LEM Papers Series 2017/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    10. Fouladvand, Javanshir & Aranguren Rojas, Maria & Hoppe, Thomas & Ghorbani, Amineh, 2022. "Simulating thermal energy community formation: Institutional enablers outplaying technological choice," Applied Energy, Elsevier, vol. 306(PA).
    11. Christoph J. Borner & Ingo Hoffmann & Jonas Krettek & Lars M. Kurzinger & Tim Schmitz, 2021. "Bitcoin: Like a Satellite or Always Hardcore? A Core-Satellite Identification in the Cryptocurrency Market," Papers 2105.12336, arXiv.org.
    12. Tesfaye, Gashaw & Wolff, Matthias, 2018. "Modeling trophic interactions and the impact of an introduced exotic carp species in the Rift Valley Lake Koka, Ethiopia," Ecological Modelling, Elsevier, vol. 378(C), pages 26-36.
    13. repec:hal:spmain:info:hdl:2441/13thfd12aa8rmplfudlgvgahff is not listed on IDEAS
    14. Agudelo, César Augusto Ruiz & Bustos, Sandra Liliana Hurtado & Moreno, Carmen Alicia Parrado, 2020. "Modeling interactions among multiple ecosystem services. A critical review," Ecological Modelling, Elsevier, vol. 429(C).
    15. Hanjo Odendaal & Monique Reid & Johann F. Kirsten, 2020. "Media‐Based Sentiment Indices as an Alternative Measure of Consumer Confidence," South African Journal of Economics, Economic Society of South Africa, vol. 88(4), pages 409-434, December.
    16. Krzysztof Dmytrow & Beata Bieszk-Stolorz, 2021. "Comparison of changes in the labour markets of post-communist countries with other EU member states," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 16(4), pages 741-764, December.
    17. Yangchen Di & Mingyue Lu & Min Chen & Zhangjian Chen & Zaiyang Ma & Manzhu Yu, 2022. "A quantitative method for the similarity assessment of typhoon tracks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 587-602, May.
    18. Ju-Sung Lee & Tatiana Filatova & Arika Ligmann-Zielinska & Behrooz Hassani-Mahmooei & Forrest Stonedahl & Iris Lorscheid & Alexey Voinov & J. Gareth Polhill & Zhanli Sun & Dawn C. Parker, 2015. "The Complexities of Agent-Based Modeling Output Analysis," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 18(4), pages 1-4.
    19. De Gregorio, Alessandro & Maria Iacus, Stefano, 2010. "Clustering of discretely observed diffusion processes," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 598-606, February.
    20. Szczepocki Piotr, 2019. "Clustering Companies Listed on the Warsaw Stock Exchange According to Time-Varying Beta," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 23(2), pages 63-79, June.
    21. Corey Ducharme & Bruno Agard & Martin Trépanier, 2024. "Improving demand forecasting for customers with missing downstream data in intermittent demand supply chains with supervised multivariate clustering," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1661-1681, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:12:p:2783-:d:1175498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.