IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i12p2756-d1173657.html
   My bibliography  Save this article

Towards Higher-Order Zeroing Neural Networks for Calculating Quaternion Matrix Inverse with Application to Robotic Motion Tracking

Author

Listed:
  • Rabeh Abbassi

    (Department of Electrical Engineering, College of Engineering, University of Hail, Hail 81451, Saudi Arabia)

  • Houssem Jerbi

    (Department of Industrial Engineering, College of Engineering, University of Hail, Hail 81451, Saudi Arabia)

  • Mourad Kchaou

    (Department of Electrical Engineering, College of Engineering, University of Hail, Hail 81451, Saudi Arabia)

  • Theodore E. Simos

    (Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, West Mishref 32093, Kuwait
    Laboratory of Inter-Disciplinary Problems of Energy Production, Ulyanovsk State Technical University, 32 Severny Venetz Street, 432027 Ulyanovsk, Russia
    Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City 40402, Taiwan
    Data Recovery Key Laboratory of Sichun Province, Neijing Normal University, Neijiang 641100, China)

  • Spyridon D. Mourtas

    (Department of Economics, Mathematics-Informatics and Statistics-Econometrics, National and Kapodistrian University of Athens, Sofokleous 1 Street, 10559 Athens, Greece
    Laboratory “Hybrid Methods of Modelling and Optimization in Complex Systems”, Siberian Federal University, Prosp. Svobodny 79, 660041 Krasnoyarsk, Russia)

  • Vasilios N. Katsikis

    (Department of Economics, Mathematics-Informatics and Statistics-Econometrics, National and Kapodistrian University of Athens, Sofokleous 1 Street, 10559 Athens, Greece)

Abstract

The efficient solution of the time-varying quaternion matrix inverse (TVQ-INV) is a challenging but crucial topic due to the significance of quaternions in many disciplines, including physics, engineering, and computer science. The main goal of this research is to employ the higher-order zeroing neural network (HZNN) strategy to address the TVQ-INV problem. HZNN is a family of zeroing neural network models that correlates to the hyperpower family of iterative methods with adjustable convergence order. Particularly, three novel HZNN models are created in order to solve the TVQ-INV both directly in the quaternion domain and indirectly in the complex and real domains. The noise-handling version of these models is also presented, and the performance of these models under various types of noises is theoretically and numerically tested. The effectiveness and practicality of these models are further supported by their use in robotic motion tracking. According to the principal results, each of these six models can solve the TVQ-INV effectively, and the HZNN strategy offers a faster convergence rate than the conventional zeroing neural network strategy.

Suggested Citation

  • Rabeh Abbassi & Houssem Jerbi & Mourad Kchaou & Theodore E. Simos & Spyridon D. Mourtas & Vasilios N. Katsikis, 2023. "Towards Higher-Order Zeroing Neural Networks for Calculating Quaternion Matrix Inverse with Application to Robotic Motion Tracking," Mathematics, MDPI, vol. 11(12), pages 1-21, June.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:12:p:2756-:d:1173657
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/12/2756/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/12/2756/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zi-Hua Weng, 2014. "Field Equations in the Complex Quaternion Spaces," Advances in Mathematical Physics, Hindawi, vol. 2014, pages 1-6, August.
    2. Vladislav N. Kovalnogov & Ruslan V. Fedorov & Dmitry A. Generalov & Andrey V. Chukalin & Vasilios N. Katsikis & Spyridon D. Mourtas & Theodore E. Simos, 2022. "Portfolio Insurance through Error-Correction Neural Networks," Mathematics, MDPI, vol. 10(18), pages 1-14, September.
    3. Spyridon D. Mourtas & Chrysostomos Kasimis, 2022. "Exploiting Mean-Variance Portfolio Optimization Problems through Zeroing Neural Networks," Mathematics, MDPI, vol. 10(17), pages 1-20, August.
    4. Wendong Jiang & Chia-Liang Lin & Vasilios N. Katsikis & Spyridon D. Mourtas & Predrag S. Stanimirović & Theodore E. Simos, 2022. "Zeroing Neural Network Approaches Based on Direct and Indirect Methods for Solving the Yang–Baxter-like Matrix Equation," Mathematics, MDPI, vol. 10(11), pages 1-13, June.
    5. Spyridon D. Mourtas, 2022. "A weights direct determination neuronet for time‐series with applications in the industrial indices of the Federal Reserve Bank of St. Louis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(7), pages 1512-1524, November.
    6. Mariya Kornilova & Vladislav Kovalnogov & Ruslan Fedorov & Mansur Zamaleev & Vasilios N. Katsikis & Spyridon D. Mourtas & Theodore E. Simos, 2022. "Zeroing Neural Network for Pseudoinversion of an Arbitrary Time-Varying Matrix Based on Singular Value Decomposition," Mathematics, MDPI, vol. 10(8), pages 1-12, April.
    7. Houssem Jerbi & Izzat Al-Darraji & Georgios Tsaramirsis & Lotfi Ladhar & Mohamed Omri, 2023. "Hamilton–Jacobi Inequality Adaptive Robust Learning Tracking Controller of Wearable Robotic Knee System," Mathematics, MDPI, vol. 11(6), pages 1-32, March.
    8. Jun Yang & Jing Na & Guanbin Gao & Chao Zhang, 2018. "Adaptive Neural Tracking Control of Robotic Manipulators with Guaranteed NN Weight Convergence," Complexity, Hindawi, vol. 2018, pages 1-11, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Houssem Jerbi & Obaid Alshammari & Sondess Ben Aoun & Mourad Kchaou & Theodore E. Simos & Spyridon D. Mourtas & Vasilios N. Katsikis, 2023. "Hermitian Solutions of the Quaternion Algebraic Riccati Equations through Zeroing Neural Networks with Application to Quadrotor Control," Mathematics, MDPI, vol. 12(1), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xingyuan Li & Chia-Liang Lin & Theodore E. Simos & Spyridon D. Mourtas & Vasilios N. Katsikis, 2022. "Computation of Time-Varying {2,3}- and {2,4}-Inverses through Zeroing Neural Networks," Mathematics, MDPI, vol. 10(24), pages 1-13, December.
    2. Stanimirović, Predrag S. & Mourtas, Spyridon D. & Mosić, Dijana & Katsikis, Vasilios N. & Cao, Xinwei & Li, Shuai, 2024. "Zeroing neural network approaches for computing time-varying minimal rank outer inverse," Applied Mathematics and Computation, Elsevier, vol. 465(C).
    3. Vladislav N. Kovalnogov & Ruslan V. Fedorov & Dmitry A. Generalov & Andrey V. Chukalin & Vasilios N. Katsikis & Spyridon D. Mourtas & Theodore E. Simos, 2022. "Portfolio Insurance through Error-Correction Neural Networks," Mathematics, MDPI, vol. 10(18), pages 1-14, September.
    4. Houssem Jerbi & Obaid Alshammari & Sondess Ben Aoun & Mourad Kchaou & Theodore E. Simos & Spyridon D. Mourtas & Vasilios N. Katsikis, 2023. "Hermitian Solutions of the Quaternion Algebraic Riccati Equations through Zeroing Neural Networks with Application to Quadrotor Control," Mathematics, MDPI, vol. 12(1), pages 1-19, December.
    5. Houssem Jerbi & Hadeel Alharbi & Mohamed Omri & Lotfi Ladhar & Theodore E. Simos & Spyridon D. Mourtas & Vasilios N. Katsikis, 2022. "Towards Higher-Order Zeroing Neural Network Dynamics for Solving Time-Varying Algebraic Riccati Equations," Mathematics, MDPI, vol. 10(23), pages 1-16, November.
    6. Hadeel Alharbi & Houssem Jerbi & Mourad Kchaou & Rabeh Abbassi & Theodore E. Simos & Spyridon D. Mourtas & Vasilios N. Katsikis, 2023. "Time-Varying Pseudoinversion Based on Full-Rank Decomposition and Zeroing Neural Networks," Mathematics, MDPI, vol. 11(3), pages 1-14, January.
    7. Katsikis, Vasilios N. & Mourtas, Spyridon D. & Stanimirović, Predrag S. & Li, Shuai & Cao, Xinwei, 2023. "Time-varying minimum-cost portfolio insurance problem via an adaptive fuzzy-power LVI-PDNN," Applied Mathematics and Computation, Elsevier, vol. 441(C).
    8. Spyridon D. Mourtas & Chrysostomos Kasimis, 2022. "Exploiting Mean-Variance Portfolio Optimization Problems through Zeroing Neural Networks," Mathematics, MDPI, vol. 10(17), pages 1-20, August.
    9. Dimitris Lagios & Spyridon D. Mourtas & Panagiotis Zervas & Giannis Tzimas, 2023. "A Weights Direct Determination Neural Network for International Standard Classification of Occupations," Mathematics, MDPI, vol. 11(3), pages 1-14, January.
    10. Guanyu Lai & Sheng Zhou & Weijun Yang & Xiaodong Wang & Fang Wang, 2023. "Prescribed Fixed-Time Adaptive Neural Control for Manipulators with Uncertain Dynamics and Actuator Failures," Mathematics, MDPI, vol. 11(13), pages 1-20, June.
    11. Catalina Lozano-Murcia & Francisco P. Romero & Jesus Serrano-Guerrero & Jose A. Olivas, 2023. "A Comparison between Explainable Machine Learning Methods for Classification and Regression Problems in the Actuarial Context," Mathematics, MDPI, vol. 11(14), pages 1-20, July.
    12. Bolin Liao & Cheng Hua & Xinwei Cao & Vasilios N. Katsikis & Shuai Li, 2022. "Complex Noise-Resistant Zeroing Neural Network for Computing Complex Time-Dependent Lyapunov Equation," Mathematics, MDPI, vol. 10(15), pages 1-17, August.
    13. Hoang Vu Dao & Manh Hung Nguyen & Kyoung Kwan Ahn, 2023. "Nonlinear Functional Observer Design for Robot Manipulators," Mathematics, MDPI, vol. 11(19), pages 1-16, September.
    14. Yun-Shan Wei & Qing-Yuan Xu, 2018. "Iterative Learning Control for Linear Discrete-Time Systems with Randomly Variable Input Trail Length," Complexity, Hindawi, vol. 2018, pages 1-6, November.
    15. Houssem Jerbi & Izzat Al-Darraji & Georgios Tsaramirsis & Lotfi Ladhar & Mohamed Omri, 2023. "Hamilton–Jacobi Inequality Adaptive Robust Learning Tracking Controller of Wearable Robotic Knee System," Mathematics, MDPI, vol. 11(6), pages 1-32, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:12:p:2756-:d:1173657. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.