IDEAS home Printed from https://ideas.repec.org/a/hin/complx/7131562.html
   My bibliography  Save this article

Adaptive Neural Tracking Control of Robotic Manipulators with Guaranteed NN Weight Convergence

Author

Listed:
  • Jun Yang
  • Jing Na
  • Guanbin Gao
  • Chao Zhang

Abstract

Although adaptive control for robotic manipulators has been widely studied, most of them require the acceleration signals of the joints, which are usually difficult to measure directly. Although neural networks (NNs) have been used to approximate the unknown nonlinear dynamics in the robotic systems, the conventional adaptive laws for updating the NN weights cannot guarantee that the obtained NN weights converge to their ideal values, which could degrade the tracking control response. To address these two issues, a new adaptive algorithm with the extracted NN weights error is incorporated into adaptive control, where a novel leakage term is superimposed on the gradient method. By using the Lyapunov approach, the convergence of both the tracking error and the estimation error can be guaranteed simultaneously. In addition, two auxiliary functions are introduced to reformulate the robotic model for designing the adaptive law, and a filter operation is used to avoid measuring the acceleration signals. Comparisons to other well-recognized adaptive laws are given, and extensive simulations based on a 2-DOF SCARA robotic system are given to verify the effectiveness of the proposed control strategy.

Suggested Citation

  • Jun Yang & Jing Na & Guanbin Gao & Chao Zhang, 2018. "Adaptive Neural Tracking Control of Robotic Manipulators with Guaranteed NN Weight Convergence," Complexity, Hindawi, vol. 2018, pages 1-11, October.
  • Handle: RePEc:hin:complx:7131562
    DOI: 10.1155/2018/7131562
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2018/7131562.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2018/7131562.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/7131562?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hoang Vu Dao & Manh Hung Nguyen & Kyoung Kwan Ahn, 2023. "Nonlinear Functional Observer Design for Robot Manipulators," Mathematics, MDPI, vol. 11(19), pages 1-16, September.
    2. Yun-Shan Wei & Qing-Yuan Xu, 2018. "Iterative Learning Control for Linear Discrete-Time Systems with Randomly Variable Input Trail Length," Complexity, Hindawi, vol. 2018, pages 1-6, November.
    3. Hadeel Alharbi & Houssem Jerbi & Mourad Kchaou & Rabeh Abbassi & Theodore E. Simos & Spyridon D. Mourtas & Vasilios N. Katsikis, 2023. "Time-Varying Pseudoinversion Based on Full-Rank Decomposition and Zeroing Neural Networks," Mathematics, MDPI, vol. 11(3), pages 1-14, January.
    4. Houssem Jerbi & Izzat Al-Darraji & Georgios Tsaramirsis & Lotfi Ladhar & Mohamed Omri, 2023. "Hamilton–Jacobi Inequality Adaptive Robust Learning Tracking Controller of Wearable Robotic Knee System," Mathematics, MDPI, vol. 11(6), pages 1-32, March.
    5. Guanyu Lai & Sheng Zhou & Weijun Yang & Xiaodong Wang & Fang Wang, 2023. "Prescribed Fixed-Time Adaptive Neural Control for Manipulators with Uncertain Dynamics and Actuator Failures," Mathematics, MDPI, vol. 11(13), pages 1-20, June.
    6. Rabeh Abbassi & Houssem Jerbi & Mourad Kchaou & Theodore E. Simos & Spyridon D. Mourtas & Vasilios N. Katsikis, 2023. "Towards Higher-Order Zeroing Neural Networks for Calculating Quaternion Matrix Inverse with Application to Robotic Motion Tracking," Mathematics, MDPI, vol. 11(12), pages 1-21, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:7131562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.