IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i12p2617-d1166055.html
   My bibliography  Save this article

An Effective Partitional Crisp Clustering Method Using Gradient Descent Approach

Author

Listed:
  • Soroosh Shalileh

    (Center for Language and Brain, HSE University, Myasnitskaya Ulitsa, 20, 101000 Moscow, Russia
    Vision Modelling Lab, HSE University, Myasnitskaya Ulitsa, 20, 101000 Moscow, Russia)

Abstract

Enhancing the effectiveness of clustering methods has always been of great interest. Therefore, inspired by the success story of the gradient descent approach in supervised learning in the current research, we proposed an effective clustering method using the gradient descent approach. As a supplementary device for further improvements, we implemented our proposed method using an automatic differentiation library to facilitate the users in applying any differentiable distance functions. We empirically validated and compared the performance of our proposed method with four popular and effective clustering methods from the literature on 11 real-world and 720 synthetic datasets. Our experiments proved that our proposed method is valid, and in the majority of the cases, it is more effective than the competitors.

Suggested Citation

  • Soroosh Shalileh, 2023. "An Effective Partitional Crisp Clustering Method Using Gradient Descent Approach," Mathematics, MDPI, vol. 11(12), pages 1-23, June.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:12:p:2617-:d:1166055
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/12/2617/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/12/2617/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kim, Jaejik & Billard, L., 2012. "Dissimilarity measures and divisive clustering for symbolic multimodal-valued data," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2795-2808.
    2. Kim, Jaejik & Billard, L., 2011. "A polythetic clustering process and cluster validity indexes for histogram-valued objects," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2250-2262, July.
    3. Fionn Murtagh & Pierre Legendre, 2014. "Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion?," Journal of Classification, Springer;The Classification Society, vol. 31(3), pages 274-295, October.
    4. Ekaterina Kovaleva & Boris Mirkin, 2015. "Bisecting K-Means and 1D Projection Divisive Clustering: A Unified Framework and Experimental Comparison," Journal of Classification, Springer;The Classification Society, vol. 32(3), pages 414-442, October.
    5. Chavent, Marie & Lechevallier, Yves & Briant, Olivier, 2007. "DIVCLUS-T: A monothetic divisive hierarchical clustering method," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 687-701, October.
    6. Boris Mirkin & Soroosh Shalileh, 2022. "Community Detection in Feature-Rich Networks Using Data Recovery Approach," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 432-462, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nataša Kejžar & Simona Korenjak-Černe & Vladimir Batagelj, 2021. "Clustering of modal-valued symbolic data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(2), pages 513-541, June.
    2. Wu, Han-Ming & Tien, Yin-Jing & Chen, Chun-houh, 2010. "GAP: A graphical environment for matrix visualization and cluster analysis," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 767-778, March.
    3. Maurizio Vichi & Carlo Cavicchia & Patrick J. F. Groenen, 2022. "Hierarchical Means Clustering," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 553-577, November.
    4. Jiao Jieying & Hu Guanyu & Yan Jun, 2021. "A Bayesian marked spatial point processes model for basketball shot chart," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 17(2), pages 77-90, June.
    5. Paulus, Michal & Kristoufek, Ladislav, 2015. "Worldwide clustering of the corruption perception," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 351-358.
    6. Hyeri Choi & Min Jae Park, 2019. "Evaluating the Efficiency of Governmental Excellence for Social Progress: Focusing on Low- and Lower-Middle-Income Countries," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 141(1), pages 111-130, January.
    7. Maksym Polyakov & Morteza Chalak & Md. Sayed Iftekhar & Ram Pandit & Sorada Tapsuwan & Fan Zhang & Chunbo Ma, 2018. "Authorship, Collaboration, Topics, and Research Gaps in Environmental and Resource Economics 1991–2015," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(1), pages 217-239, September.
    8. Grzegorz Maciejewski & Mirosława Malinowska & Barbara Kucharska & Michał Kucia & Beata Kolny, 2021. "Sustainable Development as a Factor Differentiating Consumer Behavior: The Case of Poland," European Research Studies Journal, European Research Studies Journal, vol. 0(3), pages 934-948.
    9. Giger, Markus & Mutea, Emily & Kiteme, Boniface & Eckert, Sandra & Anseeuw, Ward & Zaehringer, Julie G., 2020. "Large agricultural investments in Kenya’s Nanyuki Area: Inventory and analysis of business models," Land Use Policy, Elsevier, vol. 99(C).
    10. Walker, Nathan L. & Styles, David & Coughlan, Paul & Williams, A. Prysor, 2022. "Cross-sector sustainability benchmarking of major utilities in the United Kingdom," Utilities Policy, Elsevier, vol. 78(C).
    11. Pierre H. H. Schneeberger & Morgan Gueuning & Sophie Welsche & Eveline Hürlimann & Julian Dommann & Cécile Häberli & Jürg E. Frey & Somphou Sayasone & Jennifer Keiser, 2022. "Different gut microbial communities correlate with efficacy of albendazole-ivermectin against soil-transmitted helminthiases," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. Abang Zainoren Abang Abdurahman & Syerina Azlin Md Nasir & Wan Fairos Wan Yaacob & Serah Jaya & Suhaili Mokhtar, 2021. "Spatio-Temporal Clustering of Sarawak Malaysia Total Protected Area Visitors," Sustainability, MDPI, vol. 13(21), pages 1-19, October.
    13. Mulu Abraha Woldegiorgis & Janet E. Hiller & Wubegzier Mekonnen & Jahar Bhowmik, 2018. "Disparities in maternal health services in sub-Saharan Africa," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 63(4), pages 525-535, May.
    14. Monika Stanny & Łukasz Komorowski & Andrzej Rosner, 2021. "The Socio-Economic Heterogeneity of Rural Areas: Towards a Rural Typology of Poland," Energies, MDPI, vol. 14(16), pages 1-23, August.
    15. Renato Amorim, 2015. "Feature Relevance in Ward’s Hierarchical Clustering Using the L p Norm," Journal of Classification, Springer;The Classification Society, vol. 32(1), pages 46-62, April.
    16. Anca Gabriela Ilie & Marinela Luminita Emanuela Zlatea & Cristina Negreanu & Dan Dumitriu & Alma Pentescu, 2023. "Reliance on Russian Federation Energy Imports and Renewable Energy in the European Union," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 25(64), pages 780-780, August.
    17. Luiza Ossowska & Dorota Janiszewska & Natalia Bartkowiak-Bakun & Grzegorz Kwiatkowski, 2020. "Energy Consumption Versus Greenhouse Gas Emissions in EU," European Research Studies Journal, European Research Studies Journal, vol. 0(3), pages 185-198.
    18. Lerato Lerato & Thomas Niesler, 2015. "Clustering Acoustic Segments Using Multi-Stage Agglomerative Hierarchical Clustering," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-24, October.
    19. Jon Ellingsen & Vegard H. Larsen & Leif Anders Thorsrud, 2020. "News Media vs. FRED-MD for Macroeconomic Forecasting," CESifo Working Paper Series 8639, CESifo.
    20. Sokhna Dieng & Pierre Michel & Abdoulaye Guindo & Kankoe Sallah & El-Hadj Ba & Badara Cissé & Maria Patrizia Carrieri & Cheikh Sokhna & Paul Milligan & Jean Gaudart, 2020. "Application of Functional Data Analysis to Identify Patterns of Malaria Incidence, to Guide Targeted Control Strategies," IJERPH, MDPI, vol. 17(11), pages 1-23, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:12:p:2617-:d:1166055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.