IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i10p2358-d1150273.html
   My bibliography  Save this article

Data-Driven Optimized Artificial Neural Network Technique for Prediction of Flyrock Induced by Boulder Blasting

Author

Listed:
  • Xianan Wang

    (School of Civil and Architectural Engineering, Anyang Institute of Technology, Anyang 455000, China)

  • Shahab Hosseini

    (Faculty of Engineering, Tarbiat Modares University, Tehran 14115-175, Iran)

  • Danial Jahed Armaghani

    (Centre of Tropical Geoengineering (GEOTROPIK), Institute of Smart Infrastructure and Innovative Engineering (ISIIC), Faculty of Civil Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia)

  • Edy Tonnizam Mohamad

    (Centre of Tropical Geoengineering (GEOTROPIK), Institute of Smart Infrastructure and Innovative Engineering (ISIIC), Faculty of Civil Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia)

Abstract

One of the most undesirable consequences induced by blasting in open-pit mines and civil activities is flyrock. Furthermore, the production of oversize boulders creates many problems for the continuation of the work and usually imposes additional costs on the project. In this way, the breakage of oversize boulders is associated with throwing small fragments particles at high speed, which can lead to serious risks to human resources and infrastructures. Hence, the accurate prediction of flyrock induced by boulder blasting is crucial to avoid possible consequences and its’ environmental side effects. This study attempts to develop an optimized artificial neural network (ANN) by particle swarm optimization (PSO) and jellyfish search algorithm (JSA) to construct the hybrid models for anticipating flyrock distance resulting in boulder blasting in a quarry mine. The PSO and JSA algorithms were used to determine the optimum values of neurons’ weight and biases connected to neurons. In this regard, a database involving 65 monitored boulders blasting for recording flyrock distance was collected that comprises six influential parameters on flyrock distance, i.e., hole depth, burden, hole angle, charge weight, stemming, and powder factor and one target parameter, i.e., flyrock distance. The ten various models of ANN, PSO–ANN, and JSA–ANN were established for estimating flyrock distance, and their results were investigated by applying three evaluation indices of coefficient of determination (R 2 ), root mean square error (RMSE) and value accounted for (VAF). The results of the calculation of evaluation indicators revealed that R 2 , values of (0.957, 0.972 and 0.995) and (0.945, 0.954 and 0.989) were determined to train and test of proposed predictive models, respectively. The yielded results denoted that although ANN model is capable of anticipating flyrock distance, the hybrid PSO–ANN and JSA–ANN models can anticipate flyrock distance with more accuracy. Furthermore, the performance and accuracy level of the JSA–ANN predictive model can estimate better compared to ANN and PSO–ANN models. Therefore, the JSA–ANN model is identified as the superior predictive model in estimating flyrock distance induced from boulder blasting. In the final, a sensitivity analysis was conducted to determine the most influential parameters in flyrock distance, and the results showed that charge weight, powder factor, and hole angle have a high impact on flyrock changes.

Suggested Citation

  • Xianan Wang & Shahab Hosseini & Danial Jahed Armaghani & Edy Tonnizam Mohamad, 2023. "Data-Driven Optimized Artificial Neural Network Technique for Prediction of Flyrock Induced by Boulder Blasting," Mathematics, MDPI, vol. 11(10), pages 1-22, May.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:10:p:2358-:d:1150273
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/10/2358/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/10/2358/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rana Muhammad Adnan Ikram & Leonardo Goliatt & Ozgur Kisi & Slavisa Trajkovic & Shamsuddin Shahid, 2022. "Covariance Matrix Adaptation Evolution Strategy for Improving Machine Learning Approaches in Streamflow Prediction," Mathematics, MDPI, vol. 10(16), pages 1-30, August.
    2. Hosseini, Shahab & Mousavi, Amin & Monjezi, Masoud & Khandelwal, Manoj, 2022. "Mine-to-crusher policy: Planning of mine blasting patterns for environmentally friendly and optimum fragmentation using Monte Carlo simulation-based multi-objective grey wolf optimization approach," Resources Policy, Elsevier, vol. 79(C).
    3. Chou, Jui-Sheng & Truong, Dinh-Nhat, 2021. "A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean," Applied Mathematics and Computation, Elsevier, vol. 389(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Jue & Hosseini, Shahab & Chen, Qinyang & Jahed Armaghani, Danial, 2023. "Super learner ensemble model: A novel approach for predicting monthly copper price in future," Resources Policy, Elsevier, vol. 85(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiangning Dong & Xuhao Zhu & Minghua Hu & Jie Bao, 2023. "A Methodology for Predicting Ground Delay Program Incidence through Machine Learning," Sustainability, MDPI, vol. 15(8), pages 1-19, April.
    2. Ahmed Ginidi & Sherif M. Ghoneim & Abdallah Elsayed & Ragab El-Sehiemy & Abdullah Shaheen & Attia El-Fergany, 2021. "Gorilla Troops Optimizer for Electrically Based Single and Double-Diode Models of Solar Photovoltaic Systems," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    3. Ghareeb Moustafa & Ali M. El-Rifaie & Idris H. Smaili & Ahmed Ginidi & Abdullah M. Shaheen & Ahmed F. Youssef & Mohamed A. Tolba, 2023. "An Enhanced Dwarf Mongoose Optimization Algorithm for Solving Engineering Problems," Mathematics, MDPI, vol. 11(15), pages 1-26, July.
    4. Mohamed Abdel-Basset & Reda Mohamed & Ripon K. Chakrabortty & Michael J. Ryan & Attia El-Fergany, 2021. "An Improved Artificial Jellyfish Search Optimizer for Parameter Identification of Photovoltaic Models," Energies, MDPI, vol. 14(7), pages 1-33, March.
    5. Mahamed G. H. Omran & Maurice Clerc & Fatme Ghaddar & Ahmad Aldabagh & Omar Tawfik, 2022. "Permutation Tests for Metaheuristic Algorithms," Mathematics, MDPI, vol. 10(13), pages 1-15, June.
    6. Zhao, Jue & Hosseini, Shahab & Chen, Qinyang & Jahed Armaghani, Danial, 2023. "Super learner ensemble model: A novel approach for predicting monthly copper price in future," Resources Policy, Elsevier, vol. 85(PB).
    7. Mohamed Abdel-Basset & Reda Mohamed & Attia El-Fergany & Sameh S. Askar & Mohamed Abouhawwash, 2021. "Efficient Ranking-Based Whale Optimizer for Parameter Extraction of Three-Diode Photovoltaic Model: Analysis and Validations," Energies, MDPI, vol. 14(13), pages 1-20, June.
    8. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    9. Hesham Alhumade & Iqbal Ahmed Moujdin & Saad Al-Shahrani, 2023. "Increasing Output Power of a Microfluidic Fuel Cell Using Fuzzy Modeling and Jellyfish Search Optimization," Sustainability, MDPI, vol. 15(14), pages 1-15, July.
    10. Araby Mahdy & Abdullah Shaheen & Ragab El-Sehiemy & Ahmed Ginidi & Saad F. Al-Gahtani, 2023. "Single- and Multi-Objective Optimization Frameworks of Shape Design of Tubular Linear Synchronous Motor," Energies, MDPI, vol. 16(5), pages 1-27, March.
    11. Liqiong Huang & Yuanyuan Wang & Yuxuan Guo & Gang Hu, 2022. "An Improved Reptile Search Algorithm Based on Lévy Flight and Interactive Crossover Strategy to Engineering Application," Mathematics, MDPI, vol. 10(13), pages 1-39, July.
    12. Ahmed Fathy & Hegazy Rezk & Dalia Yousri & Abdullah G. Alharbi & Sulaiman Alshammari & Yahia B. Hassan, 2023. "Maximizing Bio-Hydrogen Production from an Innovative Microbial Electrolysis Cell Using Artificial Intelligence," Sustainability, MDPI, vol. 15(4), pages 1-13, February.
    13. Abdullah Shaheen & Ragab El-Sehiemy & Salah Kamel & Ali Selim, 2022. "Optimal Operational Reliability and Reconfiguration of Electrical Distribution Network Based on Jellyfish Search Algorithm," Energies, MDPI, vol. 15(19), pages 1-14, September.
    14. Zhang, Zhendong & He, Hongwen & Wang, Yaxiong & Quan, Shengwei & Chen, Jinzhou & Han, Ruoyan, 2024. "A novel generalized prognostic method of proton exchange membrane fuel cell using multi-point estimation under various operating conditions," Applied Energy, Elsevier, vol. 357(C).
    15. Yanhong Feng & Hongmei Wang & Zhaoquan Cai & Mingliang Li & Xi Li, 2023. "Hybrid Learning Moth Search Algorithm for Solving Multidimensional Knapsack Problems," Mathematics, MDPI, vol. 11(8), pages 1-28, April.
    16. Ibrahim Attiya & Laith Abualigah & Samah Alshathri & Doaa Elsadek & Mohamed Abd Elaziz, 2022. "Dynamic Jellyfish Search Algorithm Based on Simulated Annealing and Disruption Operators for Global Optimization with Applications to Cloud Task Scheduling," Mathematics, MDPI, vol. 10(11), pages 1-23, June.
    17. Walaa H. El-Ashmawi & Ahmad Salah & Mahmoud Bekhit & Guoqing Xiao & Khalil Al Ruqeishi & Ahmed Fathalla, 2023. "An Adaptive Jellyfish Search Algorithm for Packing Items with Conflict," Mathematics, MDPI, vol. 11(14), pages 1-28, July.
    18. Venkata Satya Durga Manohar Sahu & Padarbinda Samal & Chinmoy Kumar Panigrahi, 2024. "A novel hybrid GWO-PSO-CSA for achieving an optimal solution of the manipulators," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(11), pages 5206-5230, November.
    19. Shaheen, Abdullah M. & Ginidi, Ahmed R. & El-Sehiemy, Ragab A. & El-Fergany, Attia & Elsayed, Abdallah M., 2023. "Optimal parameters extraction of photovoltaic triple diode model using an enhanced artificial gorilla troops optimizer," Energy, Elsevier, vol. 283(C).
    20. Manlin Chen & Zhijie Zhou & Xiaoxia Han & Zhichao Feng, 2023. "A Text-Oriented Fault Diagnosis Method for Electromechanical Device Based on Belief Rule Base," Mathematics, MDPI, vol. 11(8), pages 1-25, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:10:p:2358-:d:1150273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.