IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2022i1p77-d1014581.html
   My bibliography  Save this article

Energy-Efficient Hybrid Flowshop Scheduling with Consistent Sublots Using an Improved Cooperative Coevolutionary Algorithm

Author

Listed:
  • Chengshuai Li

    (School of Computer Science, Liaocheng University, Liaocheng 252059, China)

  • Biao Zhang

    (School of Computer Science, Liaocheng University, Liaocheng 252059, China)

  • Yuyan Han

    (School of Computer Science, Liaocheng University, Liaocheng 252059, China)

  • Yuting Wang

    (School of Computer Science, Liaocheng University, Liaocheng 252059, China)

  • Junqing Li

    (School of Computer Science, Shandong Normal University, Jinan 252000, China)

  • Kaizhou Gao

    (Macau Institute of Systems Engineering, Macau University of Science and Technology, Taipa, Macau 999078, China)

Abstract

Energy conservation, emission reduction, and green and low carbon are of great significance to sustainable development, and are also the theme of the transformation and upgrading of the manufacturing industry. This paper concentrates on studying the energy-efficient hybrid flowshop scheduling problem with consistent sublots (HFSP_ECS) with the objective of minimizing the energy consumption. To solve the problem, the HFSP_ECS is decomposed by the idea of “divide-and-conquer”, resulting in three coupled subproblems, i.e., lot sequence, machine assignment, and lot split, which can be solved by using a cooperative methodology. Thus, an improved cooperative coevolutionary algorithm (vCCEA) is proposed by integrating the variable neighborhood descent (VND) strategy. In the vCCEA, considering the problem-specific characteristics, a two-layer encoding strategy is designed to represent the essential information, and a novel collaborative model is proposed to realize the interaction between subproblems. In addition, special neighborhood structures are designed for different subproblems, and two kinds of enhanced neighborhood structures are proposed to search for potential promising solutions. A collaborative population restart mechanism is established to ensure the population diversity. The computational results show that vCCEA can coordinate and solve each subproblem of HFSP_ECS effectively, and outperform the mathematical programming and the other state-of-the-art algorithms.

Suggested Citation

  • Chengshuai Li & Biao Zhang & Yuyan Han & Yuting Wang & Junqing Li & Kaizhou Gao, 2022. "Energy-Efficient Hybrid Flowshop Scheduling with Consistent Sublots Using an Improved Cooperative Coevolutionary Algorithm," Mathematics, MDPI, vol. 11(1), pages 1-27, December.
  • Handle: RePEc:gam:jmathe:v:11:y:2022:i:1:p:77-:d:1014581
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/1/77/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/1/77/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ruiz, Rubén & Vázquez-Rodríguez, José Antonio, 2010. "The hybrid flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 205(1), pages 1-18, August.
    2. Kalir, Adar A. & Sarin, Subhash C., 2001. "A near-optimal heuristic for the sequencing problem in multiple-batch flow-shops with small equal sublots," Omega, Elsevier, vol. 29(6), pages 577-584, December.
    3. Min Shi & Shang Gao, 2017. "Reference sharing: a new collaboration model for cooperative coevolution," Journal of Heuristics, Springer, vol. 23(1), pages 1-30, February.
    4. Missaoui, Ahmed & Ruiz, Rubén, 2022. "A parameter-Less iterated greedy method for the hybrid flowshop scheduling problem with setup times and due date windows," European Journal of Operational Research, Elsevier, vol. 303(1), pages 99-113.
    5. Pan, Quan-Ke & Gao, Liang & Li, Xin-Yu & Gao, Kai-Zhou, 2017. "Effective metaheuristics for scheduling a hybrid flowshop with sequence-dependent setup times," Applied Mathematics and Computation, Elsevier, vol. 303(C), pages 89-112.
    6. Zhang, Wei & Yin, Changyu & Liu, Jiyin & Linn, Richard J., 2005. "Multi-job lot streaming to minimize the mean completion time in m-1 hybrid flowshops," International Journal of Production Economics, Elsevier, vol. 96(2), pages 189-200, May.
    7. Liu, Jiyin, 2008. "Single-job lot streaming in m - 1 two-stage hybrid flowshops," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1171-1183, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan, Quan-Ke & Ruiz, Rubén, 2012. "An estimation of distribution algorithm for lot-streaming flow shop problems with setup times," Omega, Elsevier, vol. 40(2), pages 166-180, April.
    2. Tzu-Li Chen & Chen-Yang Cheng & Yi-Han Chou, 2020. "Multi-objective genetic algorithm for energy-efficient hybrid flow shop scheduling with lot streaming," Annals of Operations Research, Springer, vol. 290(1), pages 813-836, July.
    3. Yong Wang & Yuting Wang & Yuyan Han, 2023. "A Variant Iterated Greedy Algorithm Integrating Multiple Decoding Rules for Hybrid Blocking Flow Shop Scheduling Problem," Mathematics, MDPI, vol. 11(11), pages 1-25, May.
    4. Zhi Li & Ray Y. Zhong & Ali Vatankhah Barenji & J. J. Liu & C. X. Yu & George Q. Huang, 2021. "Bi-objective hybrid flow shop scheduling with common due date," Operational Research, Springer, vol. 21(2), pages 1153-1178, June.
    5. Weiwei Wang & Biao Zhang & Baoxian Jia, 2023. "A Multiobjective Optimization Approach for Multiobjective Hybrid Flowshop Green Scheduling with Consistent Sublots," Sustainability, MDPI, vol. 15(3), pages 1-29, February.
    6. Missaoui, Ahmed & Ruiz, Rubén, 2022. "A parameter-Less iterated greedy method for the hybrid flowshop scheduling problem with setup times and due date windows," European Journal of Operational Research, Elsevier, vol. 303(1), pages 99-113.
    7. Ruiz, Rubén & Vázquez-Rodríguez, José Antonio, 2010. "The hybrid flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 205(1), pages 1-18, August.
    8. Bozorgirad, Mir Abbas & Logendran, Rasaratnam, 2013. "Bi-criteria group scheduling in hybrid flowshops," International Journal of Production Economics, Elsevier, vol. 145(2), pages 599-612.
    9. Zoltán Varga & Pál Simon, 2014. "Examination Of Scheduling Methods For Production Systems," Advanced Logistic systems, University of Miskolc, Department of Material Handling and Logistics, vol. 8(1), pages 111-120, December.
    10. Weng, Wei & Fujimura, Shigeru, 2012. "Control methods for dynamic time-based manufacturing under customized product lead times," European Journal of Operational Research, Elsevier, vol. 218(1), pages 86-96.
    11. Santini, Alberto & Bartolini, Enrico & Schneider, Michael & Greco de Lemos, Vinicius, 2021. "The crop growth planning problem in vertical farming," European Journal of Operational Research, Elsevier, vol. 294(1), pages 377-390.
    12. Weiya Zhong & Yun Shi, 2018. "Two-stage no-wait hybrid flowshop scheduling with inter-stage flexibility," Journal of Combinatorial Optimization, Springer, vol. 35(1), pages 108-125, January.
    13. Pan, Quan-Ke & Gao, Liang & Li, Xin-Yu & Gao, Kai-Zhou, 2017. "Effective metaheuristics for scheduling a hybrid flowshop with sequence-dependent setup times," Applied Mathematics and Computation, Elsevier, vol. 303(C), pages 89-112.
    14. A. G. Leeftink & R. J. Boucherie & E. W. Hans & M. A. M. Verdaasdonk & I. M. H. Vliegen & P. J. Diest, 2018. "Batch scheduling in the histopathology laboratory," Flexible Services and Manufacturing Journal, Springer, vol. 30(1), pages 171-197, June.
    15. Jin Xu & Natarajan Gautam, 2020. "On competitive analysis for polling systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(6), pages 404-419, September.
    16. Figielska, Ewa, 2014. "A heuristic for scheduling in a two-stage hybrid flowshop with renewable resources shared among the stages," European Journal of Operational Research, Elsevier, vol. 236(2), pages 433-444.
    17. Alexis Robbes & Yannick Kergosien & Virginie André & Jean-Charles Billaut, 2022. "Efficient heuristics to minimize the total tardiness of chemotherapy drug production and delivery," Flexible Services and Manufacturing Journal, Springer, vol. 34(3), pages 785-820, September.
    18. D Biskup & M Feldmann, 2006. "Lot streaming with variable sublots: an integer programming formulation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(3), pages 296-303, March.
    19. Fátima Pilar & Eliana Costa e Silva & Ana Borges, 2023. "Optimizing Vehicle Repairs Scheduling Using Mixed Integer Linear Programming: A Case Study in the Portuguese Automobile Sector," Mathematics, MDPI, vol. 11(11), pages 1-23, June.
    20. Neufeld, Janis S. & Schulz, Sven & Buscher, Udo, 2023. "A systematic review of multi-objective hybrid flow shop scheduling," European Journal of Operational Research, Elsevier, vol. 309(1), pages 1-23.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2022:i:1:p:77-:d:1014581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.