IDEAS home Printed from https://ideas.repec.org/a/pcz/alspcz/v8y2014i1p111-120.html
   My bibliography  Save this article

Examination Of Scheduling Methods For Production Systems

Author

Listed:
  • ZOLTÁN VARGA

    (University of Miskolc)

  • PÁL SIMON

    (University of Miskolc)

Abstract

Nowadays manufacturing and service companies pay more attention to meet logistical demands. The widespread lean philosophy establishes claims to reduce production and logistic costs. The biggest cost reduction can be obtained by effective scheduling algorithms and logistics optimization. Several similarities and a close relationship can be seen between the two research areas. The aim of production scheduling can be defined as the allocation of available production resources in order to satisfy the criteria set by demands. These criteria contain a lot of logistical aspects, which also play important roles. Typically, the scheduling problem involves a set of tasks and an objective function, which aims to find a balance between early completion, stock and frequent production changeovers. Since the production processes can be diverse and unique, there are several different production models and scheduling algorithms. The aim of this article is to present and compare the nowadays applied different scheduling algorithms, with which the effectiency of production systems can be increased

Suggested Citation

  • Zoltán Varga & Pál Simon, 2014. "Examination Of Scheduling Methods For Production Systems," Advanced Logistic systems, University of Miskolc, Department of Material Handling and Logistics, vol. 8(1), pages 111-120, December.
  • Handle: RePEc:pcz:alspcz:v:8:y:2014:i:1:p:111-120
    as

    Download full text from publisher

    File URL: http://web.alt.uni-miskolc.hu/als/cikkek/2014/ALS8_No1_p111_120_Varga_Simon.pdf
    Download Restriction: no

    File URL: http://web.alt.uni-miskolc.hu/als/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ruiz, Rubén & Vázquez-Rodríguez, José Antonio, 2010. "The hybrid flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 205(1), pages 1-18, August.
    2. Biskup, Dirk, 1999. "Single-machine scheduling with learning considerations," European Journal of Operational Research, Elsevier, vol. 115(1), pages 173-178, May.
    3. Ishibuchi, Hisao & Misaki, Shinta & Tanaka, Hideo, 1995. "Modified simulated annealing algorithms for the flow shop sequencing problem," European Journal of Operational Research, Elsevier, vol. 81(2), pages 388-398, March.
    4. Fanjul-Peyro, Luis & Ruiz, Rubén, 2010. "Iterated greedy local search methods for unrelated parallel machine scheduling," European Journal of Operational Research, Elsevier, vol. 207(1), pages 55-69, November.
    5. G Mosheiov, 2001. "Parallel machine scheduling with a learning effect," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(10), pages 1165-1169, October.
    6. Cheng, T. C. E. & Sin, C. C. S., 1990. "A state-of-the-art review of parallel-machine scheduling research," European Journal of Operational Research, Elsevier, vol. 47(3), pages 271-292, August.
    7. Osman, IH & Potts, CN, 1989. "Simulated annealing for permutation flow-shop scheduling," Omega, Elsevier, vol. 17(6), pages 551-557.
    8. Kuo, Wen-Hung & Yang, Dar-Li, 2006. "Minimizing the total completion time in a single-machine scheduling problem with a time-dependent learning effect," European Journal of Operational Research, Elsevier, vol. 174(2), pages 1184-1190, October.
    9. Panwalkar, S. S. & Rajagopalan, R., 1992. "Single-machine sequencing with controllable processing times," European Journal of Operational Research, Elsevier, vol. 59(2), pages 298-302, June.
    10. Nowicki, Eugeniusz & Smutnicki, Czeslaw, 1996. "A fast tabu search algorithm for the permutation flow-shop problem," European Journal of Operational Research, Elsevier, vol. 91(1), pages 160-175, May.
    11. Ben-Daya, M. & Al-Fawzan, M., 1998. "A tabu search approach for the flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 109(1), pages 88-95, August.
    12. Tseng, Chao-Tang & Liao, Ching-Jong, 2008. "A discrete particle swarm optimization for lot-streaming flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 191(2), pages 360-373, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sweeney, Kevin D. & Sweeney, Donald C. & Campbell, James F., 2019. "The performance of priority dispatching rules in a complex job shop: A study on the Upper Mississippi River," International Journal of Production Economics, Elsevier, vol. 216(C), pages 154-172.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kalczynski, Pawel Jan & Kamburowski, Jerzy, 2007. "On the NEH heuristic for minimizing the makespan in permutation flow shops," Omega, Elsevier, vol. 35(1), pages 53-60, February.
    2. Ruiz, Ruben & Maroto, Concepcion, 2005. "A comprehensive review and evaluation of permutation flowshop heuristics," European Journal of Operational Research, Elsevier, vol. 165(2), pages 479-494, September.
    3. Biskup, Dirk, 2008. "A state-of-the-art review on scheduling with learning effects," European Journal of Operational Research, Elsevier, vol. 188(2), pages 315-329, July.
    4. Nicolás Álvarez-Gil & Rafael Rosillo & David de la Fuente & Raúl Pino, 2021. "A discrete firefly algorithm for solving the flexible job-shop scheduling problem in a make-to-order manufacturing system," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(4), pages 1353-1374, December.
    5. Rajendran, Chandrasekharan & Ziegler, Hans, 2003. "Scheduling to minimize the sum of weighted flowtime and weighted tardiness of jobs in a flowshop with sequence-dependent setup times," European Journal of Operational Research, Elsevier, vol. 149(3), pages 513-522, September.
    6. Agarwal, Anurag & Colak, Selcuk & Eryarsoy, Enes, 2006. "Improvement heuristic for the flow-shop scheduling problem: An adaptive-learning approach," European Journal of Operational Research, Elsevier, vol. 169(3), pages 801-815, March.
    7. Rajendran, Chandrasekharan & Ziegler, Hans, 2004. "Ant-colony algorithms for permutation flowshop scheduling to minimize makespan/total flowtime of jobs," European Journal of Operational Research, Elsevier, vol. 155(2), pages 426-438, June.
    8. M Haouari & T Ladhari, 2003. "A branch-and-bound-based local search method for the flow shop problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(10), pages 1076-1084, October.
    9. Nowicki, Eugeniusz & Smutnicki, Czeslaw, 2006. "Some aspects of scatter search in the flow-shop problem," European Journal of Operational Research, Elsevier, vol. 169(2), pages 654-666, March.
    10. Koulamas, Christos & Gupta, Sushil & Kyparisis, George J., 2010. "A unified analysis for the single-machine scheduling problem with controllable and non-controllable variable job processing times," European Journal of Operational Research, Elsevier, vol. 205(2), pages 479-482, September.
    11. Ercan Şenyiğit & Uğur Atici & Mehmet Burak Şenol, 2022. "Effects of OCRA parameters and learning rate on machine scheduling," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(3), pages 941-959, September.
    12. Zhang, Zhe & Song, Xiaoling & Huang, Huijung & Zhou, Xiaoyang & Yin, Yong, 2022. "Logic-based Benders decomposition method for the seru scheduling problem with sequence-dependent setup time and DeJong’s learning effect," European Journal of Operational Research, Elsevier, vol. 297(3), pages 866-877.
    13. Gordon, Valery & Proth, Jean-Marie & Chu, Chengbin, 2002. "A survey of the state-of-the-art of common due date assignment and scheduling research," European Journal of Operational Research, Elsevier, vol. 139(1), pages 1-25, May.
    14. Radosław Rudek, 2017. "Parallel machine scheduling with general sum of processing time based models," Journal of Global Optimization, Springer, vol. 68(4), pages 799-814, August.
    15. Heuser, Patricia & Tauer, Björn, 2023. "Single-machine scheduling with product category-based learning and forgetting effects," Omega, Elsevier, vol. 115(C).
    16. Wang, J.-B. & Ng, C.T. & Cheng, T.C.E. & Liu, L.L., 2008. "Single-machine scheduling with a time-dependent learning effect," International Journal of Production Economics, Elsevier, vol. 111(2), pages 802-811, February.
    17. Chang, Pei-Chann & Chen, Shih-Hsin & Mani, V., 2009. "A note on due-date assignment and single machine scheduling with a learning/aging effect," International Journal of Production Economics, Elsevier, vol. 117(1), pages 142-149, January.
    18. Sündüz Dağ, 2013. "An Application On Flowshop Scheduling," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 1(1), pages 47-56, December.
    19. Bozorgirad, Mir Abbas & Logendran, Rasaratnam, 2013. "Bi-criteria group scheduling in hybrid flowshops," International Journal of Production Economics, Elsevier, vol. 145(2), pages 599-612.
    20. Wen-Hung Wu & Yunqiang Yin & T C E Cheng & Win-Chin Lin & Juei-Chao Chen & Shin-Yi Luo & Chin-Chia Wu, 2017. "A combined approach for two-agent scheduling with sum-of-processing-times-based learning effect," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(2), pages 111-120, February.

    More about this item

    Keywords

    scheduling; job shop; flow shop;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pcz:alspcz:v:8:y:2014:i:1:p:111-120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Paula Bajdor (email available below). General contact details of provider: https://edirc.repec.org/data/wzpczpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.