IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v236y2014i2p433-444.html
   My bibliography  Save this article

A heuristic for scheduling in a two-stage hybrid flowshop with renewable resources shared among the stages

Author

Listed:
  • Figielska, Ewa

Abstract

In this paper we propose a heuristic for solving the problem of resource constrained preemptive scheduling in the two-stage flowshop with one machine at the first stage and parallel unrelated machines at the second stage, where renewable resources are shared among the stages, so some quantities of the same resource can be used at different stages at the same time. Availability of every resource at any moment is limited and resource requirements of jobs are arbitrary. The objective is minimization of makespan. The problem is NP-hard. The heuristic first sequences jobs on the machine at stage 1 and then solves the preemptive scheduling problem at stage 2. Priority rules which depend on processing times and resource requirements of jobs are proposed for sequencing jobs at stage 1. A column generation algorithm which involves linear programming, a tabu search algorithm and a greedy procedure is proposed to minimize the makespan at stage 2. A lower bound on the optimal makespan in which sharing of the resources between the stages is taken into account is also derived. The performance of the heuristic evaluated experimentally by comparing the solutions to the lower bound is satisfactory.

Suggested Citation

  • Figielska, Ewa, 2014. "A heuristic for scheduling in a two-stage hybrid flowshop with renewable resources shared among the stages," European Journal of Operational Research, Elsevier, vol. 236(2), pages 433-444.
  • Handle: RePEc:eee:ejores:v:236:y:2014:i:2:p:433-444
    DOI: 10.1016/j.ejor.2013.12.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221713009788
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2013.12.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard L. Daniels & Joseph B. Mazzola, 1994. "Flow Shop Scheduling with Resource Flexibility," Operations Research, INFORMS, vol. 42(3), pages 504-522, June.
    2. Hoogeveen, J. A. & Lenstra, J. K. & Veltman, B., 1996. "Preemptive scheduling in a two-stage multiprocessor flow shop is NP-hard," European Journal of Operational Research, Elsevier, vol. 89(1), pages 172-175, February.
    3. Ruiz, Rubén & Vázquez-Rodríguez, José Antonio, 2010. "The hybrid flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 205(1), pages 1-18, August.
    4. Oguz, C. & Fikret Ercan, M. & Edwin Cheng, T. C. & Fung, Y. F., 2003. "Heuristic algorithms for multiprocessor task scheduling in a two-stage hybrid flow-shop," European Journal of Operational Research, Elsevier, vol. 149(2), pages 390-403, September.
    5. Chen, Yao & Du, Juan & David Sherman, H. & Zhu, Joe, 2010. "DEA model with shared resources and efficiency decomposition," European Journal of Operational Research, Elsevier, vol. 207(1), pages 339-349, November.
    6. Różycki, R. & Węglarz, J., 2012. "Power-aware scheduling of preemptable jobs on identical parallel processors to meet deadlines," European Journal of Operational Research, Elsevier, vol. 218(1), pages 68-75.
    7. P. C. Gilmore & R. E. Gomory, 1961. "A Linear Programming Approach to the Cutting-Stock Problem," Operations Research, INFORMS, vol. 9(6), pages 849-859, December.
    8. Kis, Tamas & Pesch, Erwin, 2005. "A review of exact solution methods for the non-preemptive multiprocessor flowshop problem," European Journal of Operational Research, Elsevier, vol. 164(3), pages 592-608, August.
    9. George B. Dantzig & Philip Wolfe, 1960. "Decomposition Principle for Linear Programs," Operations Research, INFORMS, vol. 8(1), pages 101-111, February.
    10. Gupta, Jatinder N.D. & Stafford, Edward Jr., 2006. "Flowshop scheduling research after five decades," European Journal of Operational Research, Elsevier, vol. 169(3), pages 699-711, March.
    11. de Werra, D., 1988. "On the two-phase method for preemptive scheduling," European Journal of Operational Research, Elsevier, vol. 37(2), pages 227-235, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Yi-Kuei & Huang, Ding-Hsiang, 2020. "Reliability analysis for a hybrid flow shop with due date consideration," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    2. Geurtsen, M. & Didden, Jeroen B.H.C. & Adan, J. & Atan, Z. & Adan, I., 2023. "Production, maintenance and resource scheduling: A review," European Journal of Operational Research, Elsevier, vol. 305(2), pages 501-529.
    3. Xiong, Fuli & Xing, Keyi & Wang, Feng, 2015. "Scheduling a hybrid assembly-differentiation flowshop to minimize total flow time," European Journal of Operational Research, Elsevier, vol. 240(2), pages 338-354.
    4. Zhi Li & Ray Y. Zhong & Ali Vatankhah Barenji & J. J. Liu & C. X. Yu & George Q. Huang, 2021. "Bi-objective hybrid flow shop scheduling with common due date," Operational Research, Springer, vol. 21(2), pages 1153-1178, June.
    5. Burcu Yılmaz Kaya & Aylin Adem & Metin Dağdeviren, 2020. "A DSS-Based Novel Approach Proposition Employing Decision Techniques for System Design," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 19(02), pages 413-445, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weng, Wei & Fujimura, Shigeru, 2012. "Control methods for dynamic time-based manufacturing under customized product lead times," European Journal of Operational Research, Elsevier, vol. 218(1), pages 86-96.
    2. Ruiz, Rubén & Vázquez-Rodríguez, José Antonio, 2010. "The hybrid flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 205(1), pages 1-18, August.
    3. Sankaran, Jayaram K., 1995. "Column generation applied to linear programs in course registration," European Journal of Operational Research, Elsevier, vol. 87(2), pages 328-342, December.
    4. François Clautiaux & Cláudio Alves & José Valério de Carvalho & Jürgen Rietz, 2011. "New Stabilization Procedures for the Cutting Stock Problem," INFORMS Journal on Computing, INFORMS, vol. 23(4), pages 530-545, November.
    5. Omid Shahvari & Rasaratnam Logendran & Madjid Tavana, 2022. "An efficient model-based branch-and-price algorithm for unrelated-parallel machine batching and scheduling problems," Journal of Scheduling, Springer, vol. 25(5), pages 589-621, October.
    6. Ibrahim Muter & Tevfik Aytekin, 2017. "Incorporating Aggregate Diversity in Recommender Systems Using Scalable Optimization Approaches," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 405-421, August.
    7. Barry C. Smith & Ellis L. Johnson, 2006. "Robust Airline Fleet Assignment: Imposing Station Purity Using Station Decomposition," Transportation Science, INFORMS, vol. 40(4), pages 497-516, November.
    8. A. G. Leeftink & R. J. Boucherie & E. W. Hans & M. A. M. Verdaasdonk & I. M. H. Vliegen & P. J. Diest, 2018. "Batch scheduling in the histopathology laboratory," Flexible Services and Manufacturing Journal, Springer, vol. 30(1), pages 171-197, June.
    9. Klose, Andreas & Gortz, Simon, 2007. "A branch-and-price algorithm for the capacitated facility location problem," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1109-1125, June.
    10. Syam Menon & Rakesh Gupta, 2008. "Optimal Broadcast Scheduling in Packet Radio Networks via Branch and Price," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 391-399, August.
    11. Daniel Adelman & George L. Nemhauser, 1999. "Price-Directed Control of Remnant Inventory Systems," Operations Research, INFORMS, vol. 47(6), pages 889-898, December.
    12. Tolou Esfandeh & Rajan Batta & Changhyun Kwon, 2018. "Time-Dependent Hazardous-Materials Network Design Problem," Transportation Science, INFORMS, vol. 52(2), pages 454-473, March.
    13. O. L. Mangasarian & M. E. Thompson, 2006. "Massive Data Classification via Unconstrained Support Vector Machines," Journal of Optimization Theory and Applications, Springer, vol. 131(3), pages 315-325, December.
    14. Alfaro-Fernández, Pedro & Ruiz, Rubén & Pagnozzi, Federico & Stützle, Thomas, 2020. "Automatic Algorithm Design for Hybrid Flowshop Scheduling Problems," European Journal of Operational Research, Elsevier, vol. 282(3), pages 835-845.
    15. Leão, Aline A.S. & Santos, Maristela O. & Hoto, Robinson & Arenales, Marcos N., 2011. "The constrained compartmentalized knapsack problem: mathematical models and solution methods," European Journal of Operational Research, Elsevier, vol. 212(3), pages 455-463, August.
    16. Zhu, Wenbin & Huang, Weili & Lim, Andrew, 2012. "A prototype column generation strategy for the multiple container loading problem," European Journal of Operational Research, Elsevier, vol. 223(1), pages 27-39.
    17. Fabio Vitor & Todd Easton, 2018. "The double pivot simplex method," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(1), pages 109-137, February.
    18. Paul A. Chircop & Timothy J. Surendonk & Menkes H. L. van den Briel & Toby Walsh, 2022. "On routing and scheduling a fleet of resource-constrained vessels to provide ongoing continuous patrol coverage," Annals of Operations Research, Springer, vol. 312(2), pages 723-760, May.
    19. Desaulniers, G. & Desrosiers, J. & Dumas, Y. & Marc, S. & Rioux, B. & Solomon, M. M. & Soumis, F., 1997. "Crew pairing at Air France," European Journal of Operational Research, Elsevier, vol. 97(2), pages 245-259, March.
    20. Camponogara, Eduardo & Oliveira, Mateus Dubiela & Aguiar, Marco Aurélio Schmitz de, 2015. "Scheduling pumpoff operations in onshore oilfields under electric-power constraints," European Journal of Operational Research, Elsevier, vol. 247(3), pages 945-956.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:236:y:2014:i:2:p:433-444. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.