IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2022i1p109-d1015715.html
   My bibliography  Save this article

Health Status-Based Predictive Maintenance Decision-Making via LSTM and Markov Decision Process

Author

Listed:
  • Pan Zheng

    (School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China)

  • Wenqin Zhao

    (School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China)

  • Yaqiong Lv

    (School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China)

  • Lu Qian

    (School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China)

  • Yifan Li

    (School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China)

Abstract

Maintenance decision-making is essential to achieve safe and reliable operation with high performance for equipment. To avoid unexpected shutdown and increase machine life as well as system efficiency, it is fundamental to design an effective maintenance decision-making scheme for equipment. In this paper, we propose a novel maintenance decision-making method for equipment based on Long Short-Term Memory (LSTM) and Markov decision process, which can provide specific maintenance strategies in different degradation stages of the system. Specifically, the LSTM model is firstly applied to predict the remaining service life of equipment to distinguish its health state quantitatively. Then, based on the bearing residual life prediction curve, the degradation process model is constructed, and the corresponding parameters of the model are identified. Finally, the bearing degradation curve is obtained by the degradation process model, based on which the Markov decision process model is constructed to provide accurate maintenance strategies for different health conditions of system. To demonstrate the effectiveness of the proposed method, an experimental study with the full life cycle data set of rolling bearings is carried out. The experimental results show that the proposed method can achieve efficient maintenance decisions for bearings under different health states, which provides a feasible solution for the maintenance of bearing systems.

Suggested Citation

  • Pan Zheng & Wenqin Zhao & Yaqiong Lv & Lu Qian & Yifan Li, 2022. "Health Status-Based Predictive Maintenance Decision-Making via LSTM and Markov Decision Process," Mathematics, MDPI, vol. 11(1), pages 1-13, December.
  • Handle: RePEc:gam:jmathe:v:11:y:2022:i:1:p:109-:d:1015715
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/1/109/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/1/109/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Olde Keizer, Minou C.A. & Teunter, Ruud H. & Veldman, Jasper & Babai, M. Zied, 2018. "Condition-based maintenance for systems with economic dependence and load sharing," International Journal of Production Economics, Elsevier, vol. 195(C), pages 319-327.
    2. Asif Khan & Hyunho Hwang & Heung Soo Kim, 2021. "Synthetic Data Augmentation and Deep Learning for the Fault Diagnosis of Rotating Machines," Mathematics, MDPI, vol. 9(18), pages 1-26, September.
    3. de Jonge, Bram & Dijkstra, Arjan S. & Romeijnders, Ward, 2015. "Cost benefits of postponing time-based maintenance under lifetime distribution uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 15-21.
    4. Zhou, Dengji & Yu, Ziqiang & Zhang, Huisheng & Weng, Shilie, 2016. "A novel grey prognostic model based on Markov process and grey incidence analysis for energy conversion equipment degradation," Energy, Elsevier, vol. 109(C), pages 420-429.
    5. Chen, Yiming & Liu, Yu & Jiang, Tao, 2021. "Optimal maintenance strategy for multi-state systems with single maintenance capacity and arbitrarily distributed maintenance time," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    2. Nan Zhang & Sen Tian & Le Li & Zhongbin Wang & Jun Zhang, 2023. "Maintenance analysis of a partial observable K-out-of-N system with load sharing units," Journal of Risk and Reliability, , vol. 237(4), pages 703-713, August.
    3. Zhao, Xian & He, Zongda & Wu, Yaguang & Qiu, Qingan, 2022. "Joint optimization of condition-based performance control and maintenance policies for mission-critical systems," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    4. Feng Lu & Jipeng Jiang & Jinquan Huang & Xiaojie Qiu, 2018. "An Iterative Reduced KPCA Hidden Markov Model for Gas Turbine Performance Fault Diagnosis," Energies, MDPI, vol. 11(7), pages 1-21, July.
    5. Havinga, Maik J.A. & de Jonge, Bram, 2020. "Condition-based maintenance in the cyclic patrolling repairman problem," International Journal of Production Economics, Elsevier, vol. 222(C).
    6. Liu, Gehui & Chen, Shaokuan & Ho, Tinkin & Ran, Xinchen & Mao, Baohua & Lan, Zhen, 2022. "Optimum opportunistic maintenance schedule over variable horizons considering multi-stage degradation and dynamic strategy," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    7. Dilaver, Halit Metehan & Akçay, Alp & van Houtum, Geert-Jan, 2023. "Integrated planning of asset-use and dry-docking for a fleet of maritime assets," International Journal of Production Economics, Elsevier, vol. 256(C).
    8. Briš, Radim & Byczanski, Petr & Goňo, Radomír & Rusek, Stanislav, 2017. "Discrete maintenance optimization of complex multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 80-89.
    9. Zhou, Dengji & Yao, Qinbo & Wu, Hang & Ma, Shixi & Zhang, Huisheng, 2020. "Fault diagnosis of gas turbine based on partly interpretable convolutional neural networks," Energy, Elsevier, vol. 200(C).
    10. Sharifi, Mani & Taghipour, Sharareh & Abhari, Abdolreza, 2021. "Inspection interval optimization for a k-out-of-n load sharing system under a hybrid mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    11. Alberti, Alexandre R. & Cavalcante, Cristiano A.V. & Scarf, Philip & Silva, André L.O., 2018. "Modelling inspection and replacement quality for a protection system," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 145-153.
    12. de Jonge, Bram & Teunter, Ruud & Tinga, Tiedo, 2017. "The influence of practical factors on the benefits of condition-based maintenance over time-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 21-30.
    13. Sidibe, I.B. & Khatab, A. & Diallo, C. & Kassambara, A., 2017. "Preventive maintenance optimization for a stochastically degrading system with a random initial age," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 255-263.
    14. Liu, Lujie & Yang, Jun & Kong, Xuefeng & Xiao, Yiyong, 2022. "Multi-mission selective maintenance and repairpersons assignment problem with stochastic durations," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    15. Uit Het Broek, Michiel A.J. & Teunter, Ruud H. & de Jonge, Bram & Veldman, Jasper, 2021. "Joint condition-based maintenance and load-sharing optimization for two-unit systems with economic dependency," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1119-1131.
    16. Zhang, Wenyu & Zhang, Xiaohong & He, Shuguang & Zhao, Xing & He, Zhen, 2024. "Optimal condition-based maintenance policy for multi-component repairable systems with economic dependence in a finite-horizon," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    17. Zhou, Taotao & Zhang, Xiaoge & Droguett, Enrique Lopez & Mosleh, Ali, 2023. "A generic physics-informed neural network-based framework for reliability assessment of multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    18. Oakley, Jordan L. & Wilson, Kevin J. & Philipson, Pete, 2022. "A condition-based maintenance policy for continuously monitored multi-component systems with economic and stochastic dependence," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    19. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2022. "A multi-objective maintenance strategy optimization framework for offshore wind farms considering uncertainty," Applied Energy, Elsevier, vol. 321(C).
    20. Petchrompo, Sanyapong & Parlikad, Ajith Kumar, 2019. "A review of asset management literature on multi-asset systems," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 181-201.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2022:i:1:p:109-:d:1015715. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.