A Hybrid Recommendation System of Upcoming Movies Using Sentiment Analysis of YouTube Trailer Reviews
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Heng-Ru Zhang & Fan Min & Xu He & Yuan-Yuan Xu, 2015. "A Hybrid Recommender System Based on User-Recommender Interaction," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-11, February.
- Mohammed Amin Belarbi & Saïd Mahmoudi & Ghalem Belalem, 2017. "PCA as Dimensionality Reduction for Large-Scale Image Retrieval Systems," International Journal of Ambient Computing and Intelligence (IJACI), IGI Global, vol. 8(4), pages 45-58, October.
- Prabowo, Rudy & Thelwall, Mike, 2009. "Sentiment analysis: A combined approach," Journal of Informetrics, Elsevier, vol. 3(2), pages 143-157.
- Rong Xiang & Emmanuele Chersoni & Qin Lu & Chu‐Ren Huang & Wenjie Li & Yunfei Long, 2021. "Lexical data augmentation for sentiment analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(11), pages 1432-1447, November.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Saisai Yu & Ming Guo & Xiangyong Chen & Jianlong Qiu & Jianqiang Sun, 2023. "Personalized Movie Recommendations Based on a Multi-Feature Attention Mechanism with Neural Networks," Mathematics, MDPI, vol. 11(6), pages 1-22, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shuyue Huang & Lena Jingen Liang & Hwansuk Chris Choi, 2022. "How We Failed in Context: A Text-Mining Approach to Understanding Hotel Service Failures," Sustainability, MDPI, vol. 14(5), pages 1-18, February.
- Damiano De Marchi & Rudy Becarelli & Leonardo Di Sarli, 2022. "Tourism Sustainability Index: Measuring Tourism Sustainability Based on the ETIS Toolkit, by Exploring Tourist Satisfaction via Sentiment Analysis," Sustainability, MDPI, vol. 14(13), pages 1-18, July.
- Hui Yuan & Wei Xu & Qian Li & Raymond Lau, 2018. "Topic sentiment mining for sales performance prediction in e-commerce," Annals of Operations Research, Springer, vol. 270(1), pages 553-576, November.
- Yong Shi & Luyao Zhu & Wei Li & Kun Guo & Yuanchun Zheng, 2019. "Survey on Classic and Latest Textual Sentiment Analysis Articles and Techniques," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(04), pages 1243-1287, July.
- Chunsheng Cui & Jielu Li & Zhenchun Zang, 2021. "Measuring Product Similarity with Hesitant Fuzzy Set for Recommendation," Mathematics, MDPI, vol. 9(21), pages 1-13, October.
- Yucel, Ahmet & Dag, Ali & Oztekin, Asil & Carpenter, Mark, 2022. "A novel text analytic methodology for classification of product and service reviews," Journal of Business Research, Elsevier, vol. 151(C), pages 287-297.
- Bo Wang & Feiyue Ye & Jialu Xu, 2018. "A Personalized Recommendation Algorithm Based on the User’s Implicit Feedback in E-Commerce," Future Internet, MDPI, vol. 10(12), pages 1-13, November.
- Shivendra Kumar & C. Ravindranath Chowdary, 2022. "Semantic model to extract tips from hotel reviews," Electronic Commerce Research, Springer, vol. 22(4), pages 1059-1077, December.
- F. Schweitzer & D. Garcia, 2010.
"An agent-based model of collective emotions in online communities,"
The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 77(4), pages 533-545, October.
- Frank Schweitzer & David Garcia, "undated". "An Agent-Based Model of Collective Emotions in Online Communities," Working Papers CCSS-10-007, ETH Zurich, Chair of Systems Design.
- Tidor-Vlad Pricope, 2021. "Deep Reinforcement Learning in Quantitative Algorithmic Trading: A Review," Papers 2106.00123, arXiv.org.
- Yaxin Bi, 2022. "Sentiment classification in social media data by combining triplet belief functions," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(7), pages 968-991, July.
- Lima, Ana Carolina E.S. & de Castro, Leandro Nunes & Corchado, Juan M., 2015. "A polarity analysis framework for Twitter messages," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 756-767.
- Abdul Majeed, 2019. "Improving Time Complexity and Accuracy of the Machine Learning Algorithms Through Selection of Highly Weighted Top k Features from Complex Datasets," Annals of Data Science, Springer, vol. 6(4), pages 599-621, December.
- Gang Wang & Daqing Zheng & Shanlin Yang & Jian Ma, 2018. "FCE-SVM: a new cluster based ensemble method for opinion mining from social media," Information Systems and e-Business Management, Springer, vol. 16(4), pages 721-742, November.
- Youngseok Choi & Habin Lee, 2017. "Data properties and the performance of sentiment classification for electronic commerce applications," Information Systems Frontiers, Springer, vol. 19(5), pages 993-1012, October.
- Nan Jing & Tao Jiang & Juan Du & Vijayan Sugumaran, 2018. "Personalized recommendation based on customer preference mining and sentiment assessment from a Chinese e-commerce website," Electronic Commerce Research, Springer, vol. 18(1), pages 159-179, March.
- Xiangfeng Luo & Yawen Yi, 2019. "Topic-Specific Emotion Mining Model for Online Comments," Future Internet, MDPI, vol. 11(3), pages 1-18, March.
- Chen, Long-Sheng & Liu, Cheng-Hsiang & Chiu, Hui-Ju, 2011. "A neural network based approach for sentiment classification in the blogosphere," Journal of Informetrics, Elsevier, vol. 5(2), pages 313-322.
- Barış-Tüzemen Özge & Tüzemen Samet & Çelik Ali Kemal, 2023. "Sentiment analysis of reviews on cappadocia: The land of beautiful horses in the eyes of tourists," European Journal of Tourism, Hospitality and Recreation, Sciendo, vol. 13(2), pages 188-197, December.
- Fan, Zhi-Ping & Che, Yu-Jie & Chen, Zhen-Yu, 2017. "Product sales forecasting using online reviews and historical sales data: A method combining the Bass model and sentiment analysis," Journal of Business Research, Elsevier, vol. 74(C), pages 90-100.
More about this item
Keywords
OTT platform; recommendation system; sentiment analysis; hybrid recommendation system; predicted rating;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:9:p:1568-:d:809784. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.