IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i9p1568-d809784.html
   My bibliography  Save this article

A Hybrid Recommendation System of Upcoming Movies Using Sentiment Analysis of YouTube Trailer Reviews

Author

Listed:
  • Sandipan Sahu

    (Department of Computer Science and Engineering, GIET University, Rayagada 765022, India)

  • Raghvendra Kumar

    (Department of Computer Science and Engineering, GIET University, Rayagada 765022, India)

  • Pathan MohdShafi

    (Department of Computer Science and Engineering, MITADT University, Loni Kalbhor 412201, India)

  • Jana Shafi

    (Department of Computer Science, College of Arts and Science, Prince Sattam bin Abdul Aziz University, Wadi Ad Dawasir 11991, Saudi Arabia)

  • SeongKi Kim

    (National Centre of Excellence in Software, Sangmyung University, Seoul 03016, Korea)

  • Muhammad Fazal Ijaz

    (Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Korea)

Abstract

Movies are one of the integral components of our everyday entertainment. In today’s world, people prefer to watch movies on their personal devices. Many movies are available on all popular Over the Top (OTT) platforms. Multiple new movies are released onto these platforms every day. The recommendation system is beneficial for guiding the user to a choice from among the overloaded contents. Most of the research on these recommendation systems has been conducted based on existing movies. We need a recommendation system for forthcoming movies in order to help viewers make a personalized decision regarding which upcoming new movies to watch. In this article, we have proposed a framework combining sentiment analysis and a hybrid recommendation system for recommending movies that are not yet released, but the trailer has been released. In the first module, we extracted comments about the movie trailer from the official YouTube channel for Netflix, computed the overall sentiment, and predicted the rating of the upcoming movies. Next, in the second module, our proposed hybrid recommendation system produced a list of preferred upcoming movies for individual users. In the third module, we finally were able to offer recommendations regarding potentially popular forthcoming movies to the user, according to their personal preferences. This method fuses the predicted rating and preferred list of upcoming movies from modules one and two. This study used publicly available data from The Movie Database (TMDb). We also created a dataset of new movies by randomly selecting a list of one hundred movies released between 2020 and 2021 on Netflix. Our experimental results established that the predicted rating of unreleased movies had the lowest error. Additionally, we showed that the proposed hybrid recommendation system recommends movies according to the user’s preferences and potentially promising forthcoming movies.

Suggested Citation

  • Sandipan Sahu & Raghvendra Kumar & Pathan MohdShafi & Jana Shafi & SeongKi Kim & Muhammad Fazal Ijaz, 2022. "A Hybrid Recommendation System of Upcoming Movies Using Sentiment Analysis of YouTube Trailer Reviews," Mathematics, MDPI, vol. 10(9), pages 1-22, May.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:9:p:1568-:d:809784
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/9/1568/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/9/1568/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Heng-Ru Zhang & Fan Min & Xu He & Yuan-Yuan Xu, 2015. "A Hybrid Recommender System Based on User-Recommender Interaction," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-11, February.
    2. Mohammed Amin Belarbi & Saïd Mahmoudi & Ghalem Belalem, 2017. "PCA as Dimensionality Reduction for Large-Scale Image Retrieval Systems," International Journal of Ambient Computing and Intelligence (IJACI), IGI Global, vol. 8(4), pages 45-58, October.
    3. Prabowo, Rudy & Thelwall, Mike, 2009. "Sentiment analysis: A combined approach," Journal of Informetrics, Elsevier, vol. 3(2), pages 143-157.
    4. Rong Xiang & Emmanuele Chersoni & Qin Lu & Chu‐Ren Huang & Wenjie Li & Yunfei Long, 2021. "Lexical data augmentation for sentiment analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(11), pages 1432-1447, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saisai Yu & Ming Guo & Xiangyong Chen & Jianlong Qiu & Jianqiang Sun, 2023. "Personalized Movie Recommendations Based on a Multi-Feature Attention Mechanism with Neural Networks," Mathematics, MDPI, vol. 11(6), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuyue Huang & Lena Jingen Liang & Hwansuk Chris Choi, 2022. "How We Failed in Context: A Text-Mining Approach to Understanding Hotel Service Failures," Sustainability, MDPI, vol. 14(5), pages 1-18, February.
    2. Damiano De Marchi & Rudy Becarelli & Leonardo Di Sarli, 2022. "Tourism Sustainability Index: Measuring Tourism Sustainability Based on the ETIS Toolkit, by Exploring Tourist Satisfaction via Sentiment Analysis," Sustainability, MDPI, vol. 14(13), pages 1-18, July.
    3. Hui Yuan & Wei Xu & Qian Li & Raymond Lau, 2018. "Topic sentiment mining for sales performance prediction in e-commerce," Annals of Operations Research, Springer, vol. 270(1), pages 553-576, November.
    4. Yong Shi & Luyao Zhu & Wei Li & Kun Guo & Yuanchun Zheng, 2019. "Survey on Classic and Latest Textual Sentiment Analysis Articles and Techniques," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(04), pages 1243-1287, July.
    5. Chunsheng Cui & Jielu Li & Zhenchun Zang, 2021. "Measuring Product Similarity with Hesitant Fuzzy Set for Recommendation," Mathematics, MDPI, vol. 9(21), pages 1-13, October.
    6. Yucel, Ahmet & Dag, Ali & Oztekin, Asil & Carpenter, Mark, 2022. "A novel text analytic methodology for classification of product and service reviews," Journal of Business Research, Elsevier, vol. 151(C), pages 287-297.
    7. Bo Wang & Feiyue Ye & Jialu Xu, 2018. "A Personalized Recommendation Algorithm Based on the User’s Implicit Feedback in E-Commerce," Future Internet, MDPI, vol. 10(12), pages 1-13, November.
    8. Shivendra Kumar & C. Ravindranath Chowdary, 2022. "Semantic model to extract tips from hotel reviews," Electronic Commerce Research, Springer, vol. 22(4), pages 1059-1077, December.
    9. F. Schweitzer & D. Garcia, 2010. "An agent-based model of collective emotions in online communities," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 77(4), pages 533-545, October.
    10. Tidor-Vlad Pricope, 2021. "Deep Reinforcement Learning in Quantitative Algorithmic Trading: A Review," Papers 2106.00123, arXiv.org.
    11. Yaxin Bi, 2022. "Sentiment classification in social media data by combining triplet belief functions," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(7), pages 968-991, July.
    12. Lima, Ana Carolina E.S. & de Castro, Leandro Nunes & Corchado, Juan M., 2015. "A polarity analysis framework for Twitter messages," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 756-767.
    13. Abdul Majeed, 2019. "Improving Time Complexity and Accuracy of the Machine Learning Algorithms Through Selection of Highly Weighted Top k Features from Complex Datasets," Annals of Data Science, Springer, vol. 6(4), pages 599-621, December.
    14. Gang Wang & Daqing Zheng & Shanlin Yang & Jian Ma, 2018. "FCE-SVM: a new cluster based ensemble method for opinion mining from social media," Information Systems and e-Business Management, Springer, vol. 16(4), pages 721-742, November.
    15. Youngseok Choi & Habin Lee, 2017. "Data properties and the performance of sentiment classification for electronic commerce applications," Information Systems Frontiers, Springer, vol. 19(5), pages 993-1012, October.
    16. Nan Jing & Tao Jiang & Juan Du & Vijayan Sugumaran, 2018. "Personalized recommendation based on customer preference mining and sentiment assessment from a Chinese e-commerce website," Electronic Commerce Research, Springer, vol. 18(1), pages 159-179, March.
    17. Xiangfeng Luo & Yawen Yi, 2019. "Topic-Specific Emotion Mining Model for Online Comments," Future Internet, MDPI, vol. 11(3), pages 1-18, March.
    18. Chen, Long-Sheng & Liu, Cheng-Hsiang & Chiu, Hui-Ju, 2011. "A neural network based approach for sentiment classification in the blogosphere," Journal of Informetrics, Elsevier, vol. 5(2), pages 313-322.
    19. Barış-Tüzemen Özge & Tüzemen Samet & Çelik Ali Kemal, 2023. "Sentiment analysis of reviews on cappadocia: The land of beautiful horses in the eyes of tourists," European Journal of Tourism, Hospitality and Recreation, Sciendo, vol. 13(2), pages 188-197, December.
    20. Fan, Zhi-Ping & Che, Yu-Jie & Chen, Zhen-Yu, 2017. "Product sales forecasting using online reviews and historical sales data: A method combining the Bass model and sentiment analysis," Journal of Business Research, Elsevier, vol. 74(C), pages 90-100.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:9:p:1568-:d:809784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.