IDEAS home Printed from https://ideas.repec.org/a/eee/jbrese/v151y2022icp287-297.html
   My bibliography  Save this article

A novel text analytic methodology for classification of product and service reviews

Author

Listed:
  • Yucel, Ahmet
  • Dag, Ali
  • Oztekin, Asil
  • Carpenter, Mark

Abstract

Classifying the sentiments of online reviews of products or services is important in that it provides the analysts with the ability to extract critical information which can be used to improve the corresponding product or service. The objective of this study is to classify the customer reviews (on a five-star and binary scale) that were collected for four different types of products/services. To achieve this goal, a novel classification framework is built by devising a unique classifier (composite variable), which includes rich information gathered by using all of the extracted features. The proposed framework is compared to commonly used Singular Value Decomposition (SVD) and chi-square-based feature selection (selected features, SF). These approaches are separately deployed in tree-based machine learning algorithms and Logistic Regression using a five-fold cross validation strategy. The results indicate that the proposed methodology outperforms the alternatives for each dataset employed.

Suggested Citation

  • Yucel, Ahmet & Dag, Ali & Oztekin, Asil & Carpenter, Mark, 2022. "A novel text analytic methodology for classification of product and service reviews," Journal of Business Research, Elsevier, vol. 151(C), pages 287-297.
  • Handle: RePEc:eee:jbrese:v:151:y:2022:i:c:p:287-297
    DOI: 10.1016/j.jbusres.2022.06.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S014829632200604X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbusres.2022.06.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David L. Olson & Dursun Delen, 2008. "Advanced Data Mining Techniques," Springer Books, Springer, number 978-3-540-76917-0, June.
    2. Onur Genç & Ali Dağ, 2016. "A machine learning-based approach to predict the velocity profiles in small streams," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 43-61, January.
    3. Amy Cohn & Cynthia Barnhart, 2006. "Composite-variable modeling for service parts logistics," Annals of Operations Research, Springer, vol. 145(1), pages 383-383, July.
    4. Amy Cohn, 2006. "Composite-variable modeling for service parts logistics," Annals of Operations Research, Springer, vol. 144(1), pages 17-32, April.
    5. Andrew P. Armacost & Cynthia Barnhart & Keith A. Ware, 2002. "Composite Variable Formulations for Express Shipment Service Network Design," Transportation Science, INFORMS, vol. 36(1), pages 1-20, February.
    6. Onur Genç & Ali Dağ, 2016. "A machine learning-based approach to predict the velocity profiles in small streams," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 43-61, January.
    7. Prabowo, Rudy & Thelwall, Mike, 2009. "Sentiment analysis: A combined approach," Journal of Informetrics, Elsevier, vol. 3(2), pages 143-157.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yoganathan, Vignesh & Osburg, Victoria-Sophie, 2024. "The mind in the machine: Estimating mind perception's effect on user satisfaction with voice-based conversational agents," Journal of Business Research, Elsevier, vol. 175(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarah Root & Amy Cohn, 2008. "A novel modeling approach for express package carrier planning," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(7), pages 670-683, October.
    2. I. Campbell & M. Montaz Ali & M. Silverwood, 2020. "Solving a dial-a-flight problem using composite variables," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 123-153, April.
    3. Ada Y. Barlatt & Amy Cohn & Oleg Gusikhin & Yakov Fradkin & Rich Davidson & John Batey, 2012. "Ford Motor Company Implements Integrated Planning and Scheduling in a Complex Automotive Manufacturing Environment," Interfaces, INFORMS, vol. 42(5), pages 478-491, October.
    4. Wang, Yulan & Wallace, Stein W. & Shen, Bin & Choi, Tsan-Ming, 2015. "Service supply chain management: A review of operational models," European Journal of Operational Research, Elsevier, vol. 247(3), pages 685-698.
    5. Christopher A. Boone & Benjamin T. Hazen & Joseph B. Skipper & Robert E. Overstreet, 2018. "A framework for investigating optimization of service parts performance with big data," Annals of Operations Research, Springer, vol. 270(1), pages 65-74, November.
    6. José-Luis Molina & Santiago Zazo & Ana-María Martín-Casado & María-Carmen Patino-Alonso, 2020. "Rivers’ Temporal Sustainability through the Evaluation of Predictive Runoff Methods," Sustainability, MDPI, vol. 12(5), pages 1-21, February.
    7. Iyoob, Ilyas Mohamed & Kutanoglu, Erhan, 2013. "Inventory sharing in integrated network design and inventory optimization with low-demand parts," European Journal of Operational Research, Elsevier, vol. 224(3), pages 497-506.
    8. Candas, Mehmet Ferhat & Kutanoglu, Erhan, 2020. "Integrated location and inventory planning in service parts logistics with customer-based service levels," European Journal of Operational Research, Elsevier, vol. 285(1), pages 279-295.
    9. Vangelis Marinakis & Themistoklis Koutsellis & Alexandros Nikas & Haris Doukas, 2021. "AI and Data Democratisation for Intelligent Energy Management," Energies, MDPI, vol. 14(14), pages 1-14, July.
    10. Mark Gilchrist & Deana Lehmann Mooers & Glenn Skrubbeltrang & Francine Vachon, 2012. "Knowledge Discovery in Databases for Competitive Advantage," Journal of Management and Strategy, Journal of Management and Strategy, Sciedu Press, vol. 3(2), pages 2-15, April.
    11. Shuyue Huang & Lena Jingen Liang & Hwansuk Chris Choi, 2022. "How We Failed in Context: A Text-Mining Approach to Understanding Hotel Service Failures," Sustainability, MDPI, vol. 14(5), pages 1-18, February.
    12. C S Sung & S H Song, 2003. "Integrated service network design for a cross-docking supply chain network," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(12), pages 1283-1295, December.
    13. Wang, Zujian & Qi, Mingyao, 2019. "Service network design considering multiple types of services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 1-14.
    14. Marina Johnson & Abdullah Albizri & Serhat Simsek, 2022. "Artificial intelligence in healthcare operations to enhance treatment outcomes: a framework to predict lung cancer prognosis," Annals of Operations Research, Springer, vol. 308(1), pages 275-305, January.
    15. Damiano De Marchi & Rudy Becarelli & Leonardo Di Sarli, 2022. "Tourism Sustainability Index: Measuring Tourism Sustainability Based on the ETIS Toolkit, by Exploring Tourist Satisfaction via Sentiment Analysis," Sustainability, MDPI, vol. 14(13), pages 1-18, July.
    16. Hui Yuan & Wei Xu & Qian Li & Raymond Lau, 2018. "Topic sentiment mining for sales performance prediction in e-commerce," Annals of Operations Research, Springer, vol. 270(1), pages 553-576, November.
    17. Mehri, Ali & Darooneh, Amir H. & Shariati, Ashrafalsadat, 2012. "The complex networks approach for authorship attribution of books," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2429-2437.
    18. C S Sung & W Yang, 2008. "An exact algorithm for a cross-docking supply chain network design problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(1), pages 119-136, January.
    19. Michał Jasiński & Tomasz Sikorski & Zbigniew Leonowicz & Klaudiusz Borkowski & Elżbieta Jasińska, 2020. "The Application of Hierarchical Clustering to Power Quality Measurements in an Electrical Power Network with Distributed Generation," Energies, MDPI, vol. 13(9), pages 1-19, May.
    20. Yong Shi & Luyao Zhu & Wei Li & Kun Guo & Yuanchun Zheng, 2019. "Survey on Classic and Latest Textual Sentiment Analysis Articles and Techniques," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(04), pages 1243-1287, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbrese:v:151:y:2022:i:c:p:287-297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbusres .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.