IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v128y2018i12p3967-3999.html
   My bibliography  Save this article

An Edgeworth expansion for functionals of Gaussian fields and its applications

Author

Listed:
  • Kim, Yoon Tae
  • Park, Hyun Suk

Abstract

This paper is concerned with the rate of convergence in the normal approximation of the sequence {Fn}, where each Fn is a functional of an infinite-dimensional Gaussian field. We develop new and powerful techniques for computing the exact rate of convergence in distribution with respect to the Kolmogorov distance. As a tool for our works, the Edgeworth expansion of general orders, with an explicitly expressed remainder, will be obtained, and this remainder term will be controlled to find upper and lower bounds of the Kolmogorov distance in the case of an arbitrary sequence {Fn}. As applications, we provide the optimal fourth moment theorem of the sequence {Fn} in the case when {Fn} is a sequence of random variables living in a fixed Wiener chaos or a finite sum of Wiener chaoses. In the former case, our results show that the conditions given in this paper seem more natural and minimal than ones appeared in the previous works.

Suggested Citation

  • Kim, Yoon Tae & Park, Hyun Suk, 2018. "An Edgeworth expansion for functionals of Gaussian fields and its applications," Stochastic Processes and their Applications, Elsevier, vol. 128(12), pages 3967-3999.
  • Handle: RePEc:eee:spapps:v:128:y:2018:i:12:p:3967-3999
    DOI: 10.1016/j.spa.2018.01.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414918300061
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2018.01.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Noreddine, Salim & Nourdin, Ivan, 2011. "On the Gaussian approximation of vector-valued multiple integrals," Journal of Multivariate Analysis, Elsevier, vol. 102(6), pages 1008-1017, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yoon-Tae Kim & Hyun-Suk Park, 2023. "Bound for an Approximation of Invariant Density of Diffusions via Density Formula in Malliavin Calculus," Mathematics, MDPI, vol. 11(10), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eden, Richard & Víquez, Juan, 2015. "Nourdin–Peccati analysis on Wiener and Wiener–Poisson space for general distributions," Stochastic Processes and their Applications, Elsevier, vol. 125(1), pages 182-216.
    2. Yoon-Tae Kim & Hyun-Suk Park, 2022. "Fourth Cumulant Bound of Multivariate Normal Approximation on General Functionals of Gaussian Fields," Mathematics, MDPI, vol. 10(8), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:128:y:2018:i:12:p:3967-3999. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.