IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i6p982-d774323.html
   My bibliography  Save this article

IoT Analytics and Agile Optimization for Solving Dynamic Team Orienteering Problems with Mandatory Visits

Author

Listed:
  • Yuda Li

    (Department of Computer Science, Multimedia and Telecommunication, Universitat Oberta de Catalunya, 08018 Barcelona, Spain)

  • Mohammad Peyman

    (Department of Computer Science, Multimedia and Telecommunication, Universitat Oberta de Catalunya, 08018 Barcelona, Spain)

  • Javier Panadero

    (Department of Computer Science, Multimedia and Telecommunication, Universitat Oberta de Catalunya, 08018 Barcelona, Spain)

  • Angel A. Juan

    (Department of Applied Statistics and Operations Research, Universitat Politècnica de València, 03801 Alcoy, Spain)

  • Fatos Xhafa

    (Department of Computer Science, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain)

Abstract

Transport activities and citizen mobility have a deep impact on enlarged smart cities. By analyzing Big Data streams generated through Internet of Things (IoT) devices, this paper aims to show the efficiency of using IoT analytics, as an agile optimization input for solving real-time problems in smart cities. IoT analytics has become the main core of large-scale Internet applications, however, its utilization in optimization approaches for real-time configuration and dynamic conditions of a smart city has been less discussed. The challenging research topic is how to reach real-time IoT analytics for use in optimization approaches. In this paper, we consider integrating IoT analytics into agile optimization problems. A realistic waste collection problem is modeled as a dynamic team orienteering problem with mandatory visits. Open data repositories from smart cities are used for extracting the IoT analytics to achieve maximum advantage under the city environment condition. Our developed methodology allows us to process real-time information gathered from IoT systems in order to optimize the vehicle routing decision under dynamic changes of the traffic environments. A series of computational experiments is provided in order to illustrate our approach and discuss its effectiveness. In these experiments, a traditional static approach is compared against a dynamic one. In the former, the solution is calculated only once at the beginning, while in the latter, the solution is re-calculated periodically as new data are obtained. The results of the experiments clearly show that our proposed dynamic approach outperforms the static one in terms of rewards.

Suggested Citation

  • Yuda Li & Mohammad Peyman & Javier Panadero & Angel A. Juan & Fatos Xhafa, 2022. "IoT Analytics and Agile Optimization for Solving Dynamic Team Orienteering Problems with Mandatory Visits," Mathematics, MDPI, vol. 10(6), pages 1-21, March.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:6:p:982-:d:774323
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/6/982/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/6/982/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eskandarpour, Majid & Ouelhadj, Djamila & Hatami, Sara & Juan, Angel A. & Khosravi, Banafsheh, 2019. "Enhanced multi-directional local search for the bi-objective heterogeneous vehicle routing problem with multiple driving ranges," European Journal of Operational Research, Elsevier, vol. 277(2), pages 479-491.
    2. Martin Savelsbergh & Tom Van Woensel, 2016. "50th Anniversary Invited Article—City Logistics: Challenges and Opportunities," Transportation Science, INFORMS, vol. 50(2), pages 579-590, May.
    3. Samuel Pelletier & Ola Jabali & Gilbert Laporte, 2016. "50th Anniversary Invited Article—Goods Distribution with Electric Vehicles: Review and Research Perspectives," Transportation Science, INFORMS, vol. 50(1), pages 3-22, February.
    4. Michael Schneider & Andreas Stenger & Dominik Goeke, 2014. "The Electric Vehicle-Routing Problem with Time Windows and Recharging Stations," Transportation Science, INFORMS, vol. 48(4), pages 500-520, November.
    5. Jesus Gonzalez-Feliu & Jean-Louis Routhier & Frédéric Semet, 2014. "Sustainable urban logistics: Concepts, methods and information systems," Post-Print halshs-01056156, HAL.
    6. Angel Alejandro Juan & Carlos Alberto Mendez & Javier Faulin & Jesica De Armas & Scott Erwin Grasman, 2016. "Electric Vehicles in Logistics and Transportation: A Survey on Emerging Environmental, Strategic, and Operational Challenges," Energies, MDPI, vol. 9(2), pages 1-21, January.
    7. Schneider, M. & Stenger, A. & Goeke, D., 2014. "The Electric Vehicle Routing Problem with Time Windows and Recharging Stations," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 62382, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ming Wan & Ting Qu & Manna Huang & Xiaohua Qiu & George Q. Huang & Jinfu Zhu & Junrong Chen, 2022. "Cloud-Edge-Terminal-Based Synchronized Decision-Making and Control System for Municipal Solid Waste Collection and Transportation," Mathematics, MDPI, vol. 10(19), pages 1-20, September.
    2. Antonio R. Uguina & Juan F. Gomez & Javier Panadero & Anna Martínez-Gavara & Angel A. Juan, 2024. "A Learnheuristic Algorithm Based on Thompson Sampling for the Heterogeneous and Dynamic Team Orienteering Problem," Mathematics, MDPI, vol. 12(11), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erfan Ghorbani & Mahdi Alinaghian & Gevork. B. Gharehpetian & Sajad Mohammadi & Guido Perboli, 2020. "A Survey on Environmentally Friendly Vehicle Routing Problem and a Proposal of Its Classification," Sustainability, MDPI, vol. 12(21), pages 1-71, October.
    2. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2021. "Green vehicle routing problem: A state-of-the-art review," International Journal of Production Economics, Elsevier, vol. 231(C).
    3. Shen, Zuo-Jun Max & Feng, Bo & Mao, Chao & Ran, Lun, 2019. "Optimization models for electric vehicle service operations: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 462-477.
    4. Leandro do C. Martins & Rafael D. Tordecilla & Juliana Castaneda & Angel A. Juan & Javier Faulin, 2021. "Electric Vehicle Routing, Arc Routing, and Team Orienteering Problems in Sustainable Transportation," Energies, MDPI, vol. 14(16), pages 1-30, August.
    5. Jie, Wanchen & Yang, Jun & Zhang, Min & Huang, Yongxi, 2019. "The two-echelon capacitated electric vehicle routing problem with battery swapping stations: Formulation and efficient methodology," European Journal of Operational Research, Elsevier, vol. 272(3), pages 879-904.
    6. Malladi, Satya S. & Christensen, Jonas M. & Ramírez, David & Larsen, Allan & Pacino, Dario, 2022. "Stochastic fleet mix optimization: Evaluating electromobility in urban logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    7. Mohammad Asghari & Seyed Mohammad Javad Mirzapour Al-E-Hashem, 2021. "Green vehicle routing problem: A state-of-the-art review," Post-Print hal-03182944, HAL.
    8. Hiermann, Gerhard & Hartl, Richard F. & Puchinger, Jakob & Vidal, Thibaut, 2019. "Routing a mix of conventional, plug-in hybrid, and electric vehicles," European Journal of Operational Research, Elsevier, vol. 272(1), pages 235-248.
    9. Cortés-Murcia, David L. & Prodhon, Caroline & Murat Afsar, H., 2019. "The electric vehicle routing problem with time windows, partial recharges and satellite customers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 184-206.
    10. Imen Ben Mohamed & Walid Klibi & Olivier Labarthe & Jean-Christophe Deschamps & Mohamed Zied Babai, 2017. "Modelling and solution approaches for the interconnected city logistics," International Journal of Production Research, Taylor & Francis Journals, vol. 55(9), pages 2664-2684, May.
    11. Samuel Pelletier & Ola Jabali & Gilbert Laporte, 2016. "50th Anniversary Invited Article—Goods Distribution with Electric Vehicles: Review and Research Perspectives," Transportation Science, INFORMS, vol. 50(1), pages 3-22, February.
    12. Alexandre M. Florio & Nabil Absi & Dominique Feillet, 2021. "Routing Electric Vehicles on Congested Street Networks," Transportation Science, INFORMS, vol. 55(1), pages 238-256, 1-2.
    13. Wang, Mengtong & Miao, Lixin & Zhang, Canrong, 2021. "A branch-and-price algorithm for a green location routing problem with multi-type charging infrastructure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    14. Xu, Min & Meng, Qiang, 2019. "Fleet sizing for one-way electric carsharing services considering dynamic vehicle relocation and nonlinear charging profile," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 23-49.
    15. Bongiovanni, Claudia & Kaspi, Mor & Geroliminis, Nikolas, 2019. "The electric autonomous dial-a-ride problem," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 436-456.
    16. Yanfei Zhu & Chunhui Li & Kwang Y. Lee, 2022. "The NR-EGA for the EVRP Problem with the Electric Energy Consumption Model," Energies, MDPI, vol. 15(10), pages 1-12, May.
    17. Khalid Aljohani & Russell G. Thompson, 2018. "A Stakeholder-Based Evaluation of the Most Suitable and Sustainable Delivery Fleet for Freight Consolidation Policies in the Inner-City Area," Sustainability, MDPI, vol. 11(1), pages 1-27, December.
    18. Alvo, Matías & Angulo, Gustavo & Klapp, Mathias A., 2021. "An exact solution approach for an electric bus dispatch problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    19. Juho Andelmin & Enrico Bartolini, 2017. "An Exact Algorithm for the Green Vehicle Routing Problem," Transportation Science, INFORMS, vol. 51(4), pages 1288-1303, November.
    20. Pelletier, Samuel & Jabali, Ola & Laporte, Gilbert & Veneroni, Marco, 2017. "Battery degradation and behaviour for electric vehicles: Review and numerical analyses of several models," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 158-187.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:6:p:982-:d:774323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.