IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i6p913-d770107.html
   My bibliography  Save this article

An Efficient Electric Charged Particles Optimization Algorithm for Numerical Optimization and Optimal Estimation of Photovoltaic Models

Author

Listed:
  • Salah Kamel

    (Department of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan 81542, Egypt)

  • Essam H. Houssein

    (Faculty of Computers and Information, Minia University, Minia 61519, Egypt)

  • Mohamed H. Hassan

    (Department of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan 81542, Egypt)

  • Mokhtar Shouran

    (Wolfson Centre for Magnetics, School of Engineering, Cardiff University, Cardiff CF24 3AA, UK)

  • Fatma A. Hashim

    (Faculty of Engineering, Helwan University, Cairo 11795, Egypt)

Abstract

The electric charged particles optimization (ECPO) technique is inspired by the interaction (exerted forces) between electrically charged particles. A developed version of ECPO called MECPO is suggested in this article to enhance the capability of searching and balancing the exploitation and exploration phases of the conventional ECPO. To let the search agent jumps out from the local optimum and avoid stagnation in the local optimum in the proposed MECPO, three different strategies in the interaction between ECPs are modified in conjunction with the conventional ECPO. Therefore, the convergence rate is enhanced and reaches rapidly to the optimal solution. To evaluate the effectiveness of the MECPO, it is executed on the test functions of the CEC’17. Furthermore, the MECPO technique is suggested to estimate the parameters of different photovoltaic models, such as the single-diode model (SDM), the double-diode model (DDM), and the triple-diode model (TDM). The simulation results illustrate the validation and effectiveness of MECPO in extracting parameters from photovoltaic models.

Suggested Citation

  • Salah Kamel & Essam H. Houssein & Mohamed H. Hassan & Mokhtar Shouran & Fatma A. Hashim, 2022. "An Efficient Electric Charged Particles Optimization Algorithm for Numerical Optimization and Optimal Estimation of Photovoltaic Models," Mathematics, MDPI, vol. 10(6), pages 1-34, March.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:6:p:913-:d:770107
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/6/913/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/6/913/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. AlHajri, M.F. & El-Naggar, K.M. & AlRashidi, M.R. & Al-Othman, A.K., 2012. "Optimal extraction of solar cell parameters using pattern search," Renewable Energy, Elsevier, vol. 44(C), pages 238-245.
    2. Oliva, Diego & Abd El Aziz, Mohamed & Ella Hassanien, Aboul, 2017. "Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm," Applied Energy, Elsevier, vol. 200(C), pages 141-154.
    3. Guojiang Xiong & Jing Zhang & Dongyuan Shi & Xufeng Yuan, 2019. "Application of Supply-Demand-Based Optimization for Parameter Extraction of Solar Photovoltaic Models," Complexity, Hindawi, vol. 2019, pages 1-22, November.
    4. Jiao, Shan & Chong, Guoshuang & Huang, Changcheng & Hu, Hanqing & Wang, Mingjing & Heidari, Ali Asghar & Chen, Huiling & Zhao, Xuehua, 2020. "Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models," Energy, Elsevier, vol. 203(C).
    5. Reem Y. Abdelghany & Salah Kamel & Hamdy M. Sultan & Ahmed Khorasy & Salah K. Elsayed & Mahrous Ahmed, 2021. "Development of an Improved Bonobo Optimizer and Its Application for Solar Cell Parameter Estimation," Sustainability, MDPI, vol. 13(7), pages 1-22, March.
    6. Chellaswamy, C. & Ramesh, R., 2016. "Parameter extraction of solar cell models based on adaptive differential evolution algorithm," Renewable Energy, Elsevier, vol. 97(C), pages 823-837.
    7. Jieming Ma & T. O. Ting & Ka Lok Man & Nan Zhang & Sheng-Uei Guan & Prudence W. H. Wong, 2013. "Parameter Estimation of Photovoltaic Models via Cuckoo Search," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-8, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed H. Hassan & Salah Kamel & José Luís Domínguez-García & Mohamed F. El-Naggar, 2022. "MSSA-DEED: A Multi-Objective Salp Swarm Algorithm for Solving Dynamic Economic Emission Dispatch Problems," Sustainability, MDPI, vol. 14(15), pages 1-23, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Ćalasan & Dražen Jovanović & Vesna Rubežić & Saša Mujović & Slobodan Đukanović, 2019. "Estimation of Single-Diode and Two-Diode Solar Cell Parameters by Using a Chaotic Optimization Approach," Energies, MDPI, vol. 12(21), pages 1-14, November.
    2. Li, Shuijia & Gong, Wenyin & Gu, Qiong, 2021. "A comprehensive survey on meta-heuristic algorithms for parameter extraction of photovoltaic models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    3. Samuel R. Fahim & Hany M. Hasanien & Rania A. Turky & Shady H. E. Abdel Aleem & Martin Ćalasan, 2022. "A Comprehensive Review of Photovoltaic Modules Models and Algorithms Used in Parameter Extraction," Energies, MDPI, vol. 15(23), pages 1-56, November.
    4. Mehmet Yesilbudak, 2021. "Parameter Extraction of Photovoltaic Cells and Modules Using Grey Wolf Optimizer with Dimension Learning-Based Hunting Search Strategy," Energies, MDPI, vol. 14(18), pages 1-27, September.
    5. Nunes, H.G.G. & Pombo, J.A.N. & Mariano, S.J.P.S. & Calado, M.R.A. & Felippe de Souza, J.A.M., 2018. "A new high performance method for determining the parameters of PV cells and modules based on guaranteed convergence particle swarm optimization," Applied Energy, Elsevier, vol. 211(C), pages 774-791.
    6. Chin, Vun Jack & Salam, Zainal, 2019. "A New Three-point-based Approach for the Parameter Extraction of Photovoltaic Cells," Applied Energy, Elsevier, vol. 237(C), pages 519-533.
    7. Blaifi, Sid-ali & Moulahoum, Samir & Taghezouit, Bilal & Saim, Abdelhakim, 2019. "An enhanced dynamic modeling of PV module using Levenberg-Marquardt algorithm," Renewable Energy, Elsevier, vol. 135(C), pages 745-760.
    8. Adeel, Muhammad & Hassan, Ahmad Kamal & Sher, Hadeed Ahmed & Murtaza, Ali Faisal, 2021. "A grade point average assessment of analytical and numerical methods for parameter extraction of a practical PV device," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    9. Chen, Xu & Xu, Bin & Mei, Congli & Ding, Yuhan & Li, Kangji, 2018. "Teaching–learning–based artificial bee colony for solar photovoltaic parameter estimation," Applied Energy, Elsevier, vol. 212(C), pages 1578-1588.
    10. Yu, Kunjie & Liang, J.J. & Qu, B.Y. & Cheng, Zhiping & Wang, Heshan, 2018. "Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models," Applied Energy, Elsevier, vol. 226(C), pages 408-422.
    11. Chaabane Bouali & Horst Schulte & Abdelkader Mami, 2019. "A High Performance Optimizing Method for Modeling Photovoltaic Cells and Modules Array Based on Discrete Symbiosis Organism Search," Energies, MDPI, vol. 12(12), pages 1-32, June.
    12. Abbassi, Rabeh & Abbassi, Abdelkader & Jemli, Mohamed & Chebbi, Souad, 2018. "Identification of unknown parameters of solar cell models: A comprehensive overview of available approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 453-474.
    13. Nawal Rai & Amel Abbadi & Fethia Hamidia & Nadia Douifi & Bdereddin Abdul Samad & Khalid Yahya, 2023. "Biogeography-Based Teaching Learning-Based Optimization Algorithm for Identifying One-Diode, Two-Diode and Three-Diode Models of Photovoltaic Cell and Module," Mathematics, MDPI, vol. 11(8), pages 1-30, April.
    14. Fan, Yi & Wang, Pengjun & Heidari, Ali Asghar & Chen, Huiling & HamzaTurabieh, & Mafarja, Majdi, 2022. "Random reselection particle swarm optimization for optimal design of solar photovoltaic modules," Energy, Elsevier, vol. 239(PA).
    15. Zhou, Junfeng & Zhang, Yanhui & Zhang, Yubo & Shang, Wen-Long & Yang, Zhile & Feng, Wei, 2022. "Parameters identification of photovoltaic models using a differential evolution algorithm based on elite and obsolete dynamic learning," Applied Energy, Elsevier, vol. 314(C).
    16. Choulli, Imade & Elyaqouti, Mustapha & Arjdal, El hanafi & Ben hmamou, Dris & Saadaoui, Driss & Lidaighbi, Souad & Elhammoudy, Abdelfattah & Abazine, Ismail, 2023. "Hybrid optimization based on the analytical approach and the particle swarm optimization algorithm (Ana-PSO) for the extraction of single and double diode models parameters," Energy, Elsevier, vol. 283(C).
    17. Fathy, Ahmed & Elaziz, Mohamed Abd & Sayed, Enas Taha & Olabi, A.G. & Rezk, Hegazy, 2019. "Optimal parameter identification of triple-junction photovoltaic panel based on enhanced moth search algorithm," Energy, Elsevier, vol. 188(C).
    18. Qais, Mohammed H. & Hasanien, Hany M. & Alghuwainem, Saad, 2019. "Identification of electrical parameters for three-diode photovoltaic model using analytical and sunflower optimization algorithm," Applied Energy, Elsevier, vol. 250(C), pages 109-117.
    19. Wu, Lijun & Chen, Zhicong & Long, Chao & Cheng, Shuying & Lin, Peijie & Chen, Yixiang & Chen, Huihuang, 2018. "Parameter extraction of photovoltaic models from measured I-V characteristics curves using a hybrid trust-region reflective algorithm," Applied Energy, Elsevier, vol. 232(C), pages 36-53.
    20. Zaiyu Gu & Guojiang Xiong & Xiaofan Fu, 2023. "Parameter Extraction of Solar Photovoltaic Cell and Module Models with Metaheuristic Algorithms: A Review," Sustainability, MDPI, vol. 15(4), pages 1-45, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:6:p:913-:d:770107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.