IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i7p3863-d527617.html
   My bibliography  Save this article

Development of an Improved Bonobo Optimizer and Its Application for Solar Cell Parameter Estimation

Author

Listed:
  • Reem Y. Abdelghany

    (Department of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan 81542, Egypt)

  • Salah Kamel

    (Department of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan 81542, Egypt)

  • Hamdy M. Sultan

    (Department of Electrical Engineering, Faculty of Engineering, Minia University, Minia 61111, Egypt)

  • Ahmed Khorasy

    (Department of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan 81542, Egypt)

  • Salah K. Elsayed

    (Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia)

  • Mahrous Ahmed

    (Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia)

Abstract

Recently, photovoltaic (PV) energy has been considered one of the most exciting new technologies in the energy sector. PV power plants receive considerable attention because of their wide applications. Consequently, it is important to study the parameters of the solar cell model to control and determine the characteristics of the PV systems. In this study, an improved bonobo optimizer (IBO) was proposed to improve the performance of the conventional bonobo optimizer (BO). Both the IBO and the BO were utilized to obtain the accurate values of the unknown parameters of different mathematical models of solar cells. The proposed IBO improved the performance of the conventional BO by enhancing the exploitation (local search) and exploration (global search) phases to find the best optimal solution, where the search space was reduced using Levy flights and the sine–cosine function. Levy flights enhance the explorative phase, whereas the sine–cosine function improves the exploitation phase. Both the proposed IBO and the conventional BO were applied on single, double, and triple diode models of solar cells. To check the effectiveness of the proposed algorithm, statistical analysis based on the results of 20 runs of the optimization program was performed. The results obtained by the proposed IBO were compared with other algorithms, and all results of the proposed algorithm showed their durability and exceeded other algorithms.

Suggested Citation

  • Reem Y. Abdelghany & Salah Kamel & Hamdy M. Sultan & Ahmed Khorasy & Salah K. Elsayed & Mahrous Ahmed, 2021. "Development of an Improved Bonobo Optimizer and Its Application for Solar Cell Parameter Estimation," Sustainability, MDPI, vol. 13(7), pages 1-22, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:7:p:3863-:d:527617
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/7/3863/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/7/3863/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Oliva, Diego & Abd El Aziz, Mohamed & Ella Hassanien, Aboul, 2017. "Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm," Applied Energy, Elsevier, vol. 200(C), pages 141-154.
    2. Yu, Kunjie & Qu, Boyang & Yue, Caitong & Ge, Shilei & Chen, Xu & Liang, Jing, 2019. "A performance-guided JAYA algorithm for parameters identification of photovoltaic cell and module," Applied Energy, Elsevier, vol. 237(C), pages 241-257.
    3. Oliva, Diego & Cuevas, Erik & Pajares, Gonzalo, 2014. "Parameter identification of solar cells using artificial bee colony optimization," Energy, Elsevier, vol. 72(C), pages 93-102.
    4. Diego Oliva & Ahmed A. Ewees & Mohamed Abd El Aziz & Aboul Ella Hassanien & Marco Peréz-Cisneros, 2017. "A Chaotic Improved Artificial Bee Colony for Parameter Estimation of Photovoltaic Cells," Energies, MDPI, vol. 10(7), pages 1-19, June.
    5. Fathy, Ahmed & Rezk, Hegazy, 2017. "Parameter estimation of photovoltaic system using imperialist competitive algorithm," Renewable Energy, Elsevier, vol. 111(C), pages 307-320.
    6. El Chaar, L. & lamont, L.A. & El Zein, N., 2011. "Review of photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2165-2175, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salah Kamel & Essam H. Houssein & Mohamed H. Hassan & Mokhtar Shouran & Fatma A. Hashim, 2022. "An Efficient Electric Charged Particles Optimization Algorithm for Numerical Optimization and Optimal Estimation of Photovoltaic Models," Mathematics, MDPI, vol. 10(6), pages 1-34, March.
    2. Ali Sohani & Mohammad Hassan Shahverdian & Hoseyn Sayyaadi & Siamak Hoseinzadeh & Saim Memon & Giuseppe Piras & Davide Astiaso Garcia, 2021. "Energy and Exergy Analyses on Seasonal Comparative Evaluation of Water Flow Cooling for Improving the Performance of Monocrystalline PV Module in Hot-Arid Climate," Sustainability, MDPI, vol. 13(11), pages 1-12, May.
    3. Song, Dongran & Li, Ziqun & Wang, Lei & Jin, Fangjun & Huang, Chaoneng & Xia, E. & Rizk-Allah, Rizk M. & Yang, Jian & Su, Mei & Joo, Young Hoon, 2022. "Energy capture efficiency enhancement of wind turbines via stochastic model predictive yaw control based on intelligent scenarios generation," Applied Energy, Elsevier, vol. 312(C).
    4. Ashok Bhansali & Namala Narasimhulu & Rocío Pérez de Prado & Parameshachari Bidare Divakarachari & Dayanand Lal Narayan, 2023. "A Review on Sustainable Energy Sources Using Machine Learning and Deep Learning Models," Energies, MDPI, vol. 16(17), pages 1-18, August.
    5. Eid, Heba F. & Cuevas, Erik & Mansour, Romany F., 2024. "Autonomous bonobo optimization algorithm for power allocation in wireless networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 217(C), pages 294-310.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehmet Yesilbudak, 2021. "Parameter Extraction of Photovoltaic Cells and Modules Using Grey Wolf Optimizer with Dimension Learning-Based Hunting Search Strategy," Energies, MDPI, vol. 14(18), pages 1-27, September.
    2. Martin Ćalasan & Dražen Jovanović & Vesna Rubežić & Saša Mujović & Slobodan Đukanović, 2019. "Estimation of Single-Diode and Two-Diode Solar Cell Parameters by Using a Chaotic Optimization Approach," Energies, MDPI, vol. 12(21), pages 1-14, November.
    3. Fathy, Ahmed & Elaziz, Mohamed Abd & Sayed, Enas Taha & Olabi, A.G. & Rezk, Hegazy, 2019. "Optimal parameter identification of triple-junction photovoltaic panel based on enhanced moth search algorithm," Energy, Elsevier, vol. 188(C).
    4. Yu, Kunjie & Liang, J.J. & Qu, B.Y. & Cheng, Zhiping & Wang, Heshan, 2018. "Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models," Applied Energy, Elsevier, vol. 226(C), pages 408-422.
    5. Long, Wen & Wu, Tiebin & Xu, Ming & Tang, Mingzhu & Cai, Shaohong, 2021. "Parameters identification of photovoltaic models by using an enhanced adaptive butterfly optimization algorithm," Energy, Elsevier, vol. 229(C).
    6. Nunes, H.G.G. & Pombo, J.A.N. & Mariano, S.J.P.S. & Calado, M.R.A. & Felippe de Souza, J.A.M., 2018. "A new high performance method for determining the parameters of PV cells and modules based on guaranteed convergence particle swarm optimization," Applied Energy, Elsevier, vol. 211(C), pages 774-791.
    7. Chin, Vun Jack & Salam, Zainal, 2019. "A New Three-point-based Approach for the Parameter Extraction of Photovoltaic Cells," Applied Energy, Elsevier, vol. 237(C), pages 519-533.
    8. Słowik, Adam & Cpałka, Krzysztof & Xue, Yu & Hapka, Aneta, 2024. "An efficient approach to parameter extraction of photovoltaic cell models using a new population-based algorithm," Applied Energy, Elsevier, vol. 364(C).
    9. Choulli, Imade & Elyaqouti, Mustapha & Arjdal, El hanafi & Ben hmamou, Dris & Saadaoui, Driss & Lidaighbi, Souad & Elhammoudy, Abdelfattah & Abazine, Ismail, 2023. "Hybrid optimization based on the analytical approach and the particle swarm optimization algorithm (Ana-PSO) for the extraction of single and double diode models parameters," Energy, Elsevier, vol. 283(C).
    10. Li, Shuijia & Gong, Wenyin & Gu, Qiong, 2021. "A comprehensive survey on meta-heuristic algorithms for parameter extraction of photovoltaic models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    11. Shufu Yuan & Yuzhang Ji & Yongxu Chen & Xin Liu & Weijun Zhang, 2023. "An Improved Differential Evolution for Parameter Identification of Photovoltaic Models," Sustainability, MDPI, vol. 15(18), pages 1-28, September.
    12. Long, Wen & Jiao, Jianjun & Liang, Ximing & Xu, Ming & Tang, Mingzhu & Cai, Shaohong, 2022. "Parameters estimation of photovoltaic models using a novel hybrid seagull optimization algorithm," Energy, Elsevier, vol. 249(C).
    13. Guojiang Xiong & Jing Zhang & Dongyuan Shi & Xufeng Yuan, 2019. "Application of Supply-Demand-Based Optimization for Parameter Extraction of Solar Photovoltaic Models," Complexity, Hindawi, vol. 2019, pages 1-22, November.
    14. Bushra Shakir Mahmood & Nazar K. Hussein & Mansourah Aljohani & Mohammed Qaraad, 2023. "A Modified Gradient Search Rule Based on the Quasi-Newton Method and a New Local Search Technique to Improve the Gradient-Based Algorithm: Solar Photovoltaic Parameter Extraction," Mathematics, MDPI, vol. 11(19), pages 1-40, October.
    15. Huawen Sheng & Chunquan Li & Hanming Wang & Zeyuan Yan & Yin Xiong & Zhenting Cao & Qianying Kuang, 2019. "Parameters Extraction of Photovoltaic Models Using an Improved Moth-Flame Optimization," Energies, MDPI, vol. 12(18), pages 1-23, September.
    16. Ebrahimi, S. Mohammadreza & Salahshour, Esmaeil & Malekzadeh, Milad & Francisco Gordillo,, 2019. "Parameters identification of PV solar cells and modules using flexible particle swarm optimization algorithm," Energy, Elsevier, vol. 179(C), pages 358-372.
    17. Adeel, Muhammad & Hassan, Ahmad Kamal & Sher, Hadeed Ahmed & Murtaza, Ali Faisal, 2021. "A grade point average assessment of analytical and numerical methods for parameter extraction of a practical PV device," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    18. Rizk-Allah, Rizk M. & El-Fergany, Attia A., 2021. "Emended heap-based optimizer for characterizing performance of industrial solar generating units using triple-diode model," Energy, Elsevier, vol. 237(C).
    19. Chen, Xu & Xu, Bin & Mei, Congli & Ding, Yuhan & Li, Kangji, 2018. "Teaching–learning–based artificial bee colony for solar photovoltaic parameter estimation," Applied Energy, Elsevier, vol. 212(C), pages 1578-1588.
    20. Samuel R. Fahim & Hany M. Hasanien & Rania A. Turky & Shady H. E. Abdel Aleem & Martin Ćalasan, 2022. "A Comprehensive Review of Photovoltaic Modules Models and Algorithms Used in Parameter Extraction," Energies, MDPI, vol. 15(23), pages 1-56, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:7:p:3863-:d:527617. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.