IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i4p669-d754460.html
   My bibliography  Save this article

Pathwise Convergent Approximation for the Fractional SDEs

Author

Listed:
  • Kęstutis Kubilius

    (Faculty of Mathematics and Informatics, Vilnius University, Akademijos g. 4, LT-08412 Vilnius, Lithuania
    These authors contributed equally to this work.)

  • Aidas Medžiūnas

    (Faculty of Mathematics and Informatics, Vilnius University, Akademijos g. 4, LT-08412 Vilnius, Lithuania
    These authors contributed equally to this work.)

Abstract

Fractional stochastic differential equation (FSDE)-based random processes are used in a wide spectrum of scientific disciplines. However, in the majority of cases, explicit solutions for these FSDEs do not exist and approximation schemes have to be applied. In this paper, we study one-dimensional stochastic differential equations (SDEs) driven by stochastic process with Hölder continuous paths of order 1 / 2 < γ < 1 . Using the Lamperti transformation, we construct a backward approximation scheme for the transformed SDE. The inverse transformation provides an approximation scheme for the original SDE which converges at the rate h 2 γ , where h is a time step size of a uniform partition of the time interval under consideration. This approximation scheme covers wider class of FSDEs and demonstrates higher convergence rate than previous schemes by other authors in the field.

Suggested Citation

  • Kęstutis Kubilius & Aidas Medžiūnas, 2022. "Pathwise Convergent Approximation for the Fractional SDEs," Mathematics, MDPI, vol. 10(4), pages 1-16, February.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:4:p:669-:d:754460
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/4/669/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/4/669/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hu, Yaozhong & Nualart, David & Song, Xiaoming, 2008. "A singular stochastic differential equation driven by fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2075-2085, October.
    2. Neuenkirch, Andreas, 2008. "Optimal pointwise approximation of stochastic differential equations driven by fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 118(12), pages 2294-2333, December.
    3. Mario Abundo & Enrica Pirozzi, 2019. "On the Integral of the Fractional Brownian Motion and Some Pseudo-Fractional Gaussian Processes," Mathematics, MDPI, vol. 7(10), pages 1-12, October.
    4. Alfonsi, Aurélien, 2013. "Strong order one convergence of a drift implicit Euler scheme: Application to the CIR process," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 602-607.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kęstutis Kubilius & Aidas Medžiūnas, 2020. "Positive Solutions of the Fractional SDEs with Non-Lipschitz Diffusion Coefficient," Mathematics, MDPI, vol. 9(1), pages 1-14, December.
    2. Hong, Jialin & Huang, Chuying & Kamrani, Minoo & Wang, Xu, 2020. "Optimal strong convergence rate of a backward Euler type scheme for the Cox–Ingersoll–Ross model driven by fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 130(5), pages 2675-2692.
    3. Lihong Guo, 2024. "Renormalization Group Method for a Stochastic Differential Equation with Multiplicative Fractional White Noise," Mathematics, MDPI, vol. 12(3), pages 1-20, January.
    4. John-Fritz Thony & Jean Vaillant, 2022. "Parameter Estimation for a Fractional Black–Scholes Model with Jumps from Discrete Time Observations," Mathematics, MDPI, vol. 10(22), pages 1-17, November.
    5. B. L. S. Prakasa Rao, 2021. "Nonparametric Estimation for Stochastic Differential Equations Driven by Mixed Fractional Brownian Motion with Random Effects," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 554-568, August.
    6. Gao, Xiangyu & Wang, Jianqiao & Wang, Yanxia & Yang, Hongfu, 2022. "The truncated Euler–Maruyama method for CIR model driven by fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 189(C).
    7. Falkowski, Adrian & Słomiński, Leszek, 2017. "SDEs with constraints driven by semimartingales and processes with bounded p-variation," Stochastic Processes and their Applications, Elsevier, vol. 127(11), pages 3536-3557.
    8. Marc Mukendi Mpanda & Safari Mukeru & Mmboniseni Mulaudzi, 2020. "Generalisation of Fractional-Cox-Ingersoll-Ross Process," Papers 2008.07798, arXiv.org, revised Jul 2022.
    9. Pavel Kříž & Leszek Szała, 2020. "Least-Squares Estimators of Drift Parameter for Discretely Observed Fractional Ornstein–Uhlenbeck Processes," Mathematics, MDPI, vol. 8(5), pages 1-20, May.
    10. Andrei Cozma & Christoph Reisinger, 2017. "Strong convergence rates for Euler approximations to a class of stochastic path-dependent volatility models," Papers 1706.07375, arXiv.org, revised Oct 2018.
    11. Zhang, Yinghan & Yang, Xiaoyuan, 2015. "Fractional stochastic Volterra equation perturbed by fractional Brownian motion," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 20-36.
    12. Alexander Melnikov & Yuliya Mishura & Georgiy Shevchenko, 2015. "Stochastic Viability and Comparison Theorems for Mixed Stochastic Differential Equations," Methodology and Computing in Applied Probability, Springer, vol. 17(1), pages 169-188, March.
    13. Andrei Cozma & Christoph Reisinger, 2017. "Strong order 1/2 convergence of full truncation Euler approximations to the Cox-Ingersoll-Ross process," Papers 1704.07321, arXiv.org, revised Oct 2018.
    14. Ngo, Hoang Long & Luong, Duc Trong, 2019. "Tamed Euler–Maruyama approximation for stochastic differential equations with locally Hölder continuous diffusion coefficients," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 133-140.
    15. Balasubramaniam, P., 2022. "Solvability of Atangana-Baleanu-Riemann (ABR) fractional stochastic differential equations driven by Rosenblatt process via measure of noncompactness," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    16. Andrei Cozma & Christoph Reisinger, 2015. "Exponential integrability properties of Euler discretization schemes for the Cox-Ingersoll-Ross process," Papers 1601.00919, arXiv.org.
    17. Nualart, David & Pérez-Abreu, Victor, 2014. "On the eigenvalue process of a matrix fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 124(12), pages 4266-4282.
    18. Elisa Alòs & Jorge A. León, 2021. "An Intuitive Introduction to Fractional and Rough Volatilities," Mathematics, MDPI, vol. 9(9), pages 1-22, April.
    19. Umut Çetin & Julien Hok, 2024. "Speeding up the Euler scheme for killed diffusions," Finance and Stochastics, Springer, vol. 28(3), pages 663-707, July.
    20. Ahmadian, D. & Ballestra, L.V. & Shokrollahi, F., 2022. "A Monte-Carlo approach for pricing arithmetic Asian rainbow options under the mixed fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:4:p:669-:d:754460. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.