IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i2p277-d726262.html
   My bibliography  Save this article

Graph-Based Siamese Network for Authorship Verification

Author

Listed:
  • Daniel Embarcadero-Ruiz

    (Posgrado en Ciencia e Ingeniería de la Computación, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico)

  • Helena Gómez-Adorno

    (Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico)

  • Alberto Embarcadero-Ruiz

    (Posgrado en Ciencia e Ingeniería de la Computación, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico)

  • Gerardo Sierra

    (Instituto de Ingeniería, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico)

Abstract

In this work, we propose a novel approach to solve the authorship identification task on a cross-topic and open-set scenario. Authorship verification is the task of determining whether or not two texts were written by the same author. We model the documents in a graph representation and then a graph neural network extracts relevant features from these graph representations. We present three strategies to represent the texts as graphs based on the co-occurrence of the POS labels of words. We propose a Siamese Network architecture composed of graph convolutional networks along with pooling and classification layers. We present different variants of the architecture and discuss the performance of each one. To evaluate our approach we used a collection of fanfiction texts provided by the PAN@CLEF 2021 shared task in two settings: a “small” corpus and a “large” corpus. Our graph-based approach achieved average scores (AUC ROC, F1, Brier score, F0.5u, and C@1) between 90% and 92.83% when training on the “small” and “large” corpus, respectively. Our model obtain results comparable to those of the state of the art in this task and greater than traditional baselines.

Suggested Citation

  • Daniel Embarcadero-Ruiz & Helena Gómez-Adorno & Alberto Embarcadero-Ruiz & Gerardo Sierra, 2022. "Graph-Based Siamese Network for Authorship Verification," Mathematics, MDPI, vol. 10(2), pages 1-24, January.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:2:p:277-:d:726262
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/2/277/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/2/277/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Moshe Koppel & Yaron Winter, 2014. "Determining if two documents are written by the same author," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(1), pages 178-187, January.
    2. Efstathios Stamatatos, 2009. "A survey of modern authorship attribution methods," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(3), pages 538-556, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silvia Corbara & Alejandro Moreo & Fabrizio Sebastiani, 2023. "Syllabic quantity patterns as rhythmic features for Latin authorship attribution," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(1), pages 128-141, January.
    2. Nils-Axel M?rner, 2018. "Evaluation of the Performance and Efficiency of the Automated Linguistic Features for Author Identification in Short Text Messages Using Different Variable Selection Techniques," Studies in Media and Communication, Redfame publishing, vol. 6(2), pages 83-102, December.
    3. Maryam Ebrahimpour & Tālis J Putniņš & Matthew J Berryman & Andrew Allison & Brian W-H Ng & Derek Abbott, 2013. "Automated Authorship Attribution Using Advanced Signal Classification Techniques," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-12, February.
    4. Diego R Amancio, 2015. "Probing the Topological Properties of Complex Networks Modeling Short Written Texts," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-17, February.
    5. Sanda-Maria Avram & Mihai Oltean, 2022. "A Comparison of Several AI Techniques for Authorship Attribution on Romanian Texts," Mathematics, MDPI, vol. 10(23), pages 1-35, December.
    6. Ballandonne, Matthieu & Cersosimo, Igor, 2022. "Towards a “Text as Data” Approach in the History of Economics: An Application to Adam Smith’s Classics," OSF Preprints mg3zb, Center for Open Science.
    7. Malik Muhammad Saad Missen & Sajeeha Qureshi & Nadeem Salamat & Nadeem Akhtar & Hina Asmat & Mickaël Coustaty & V. B. Surya Prasath, 2020. "Scientometric analysis of social science and science disciplines in a developing nation: a case study of Pakistan in the last decade," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(1), pages 113-142, April.
    8. Matthew J. Schneider & Shawn Mankad, 2021. "A Two-Stage Authorship Attribution Method Using Text and Structured Data for De-Anonymizing User-Generated Content," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 8(3), pages 66-83, September.
    9. Kargin, Vladislav, 2016. "On variation of word frequencies in Russian literary texts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 328-334.
    10. Andi Rexha & Mark Kröll & Hermann Ziak & Roman Kern, 2018. "Authorship identification of documents with high content similarity," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(1), pages 223-237, April.
    11. Jacques Savoy & Olena Zubaryeva, 2012. "Simple and efficient classification scheme based on specific vocabulary," Computational Management Science, Springer, vol. 9(3), pages 401-415, August.
    12. Haoran Zhu & Lei Lei, 2022. "The Research Trends of Text Classification Studies (2000–2020): A Bibliometric Analysis," SAGE Open, , vol. 12(2), pages 21582440221, April.
    13. Oleg Sobchuk & Artjoms Šeļa, 2024. "Computational thematics: comparing algorithms for clustering the genres of literary fiction," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-12, December.
    14. Jennifer A. Byrne & Cyril Labbé, 2017. "Striking similarities between publications from China describing single gene knockdown experiments in human cancer cell lines," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(3), pages 1471-1493, March.
    15. de Arruda, Henrique F. & Marinho, Vanessa Q. & Lima, Thales S. & Amancio, Diego R. & Costa, Luciano da F., 2018. "An image analysis approach to text analytics based on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 110-120.
    16. Stefano Sbalchiero & Maria Stella Righettini, 2017. "Rhetorical manifestation of institutional transformation," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(3), pages 1279-1296, May.
    17. Mihailo Škorić & Ranka Stanković & Milica Ikonić Nešić & Joanna Byszuk & Maciej Eder, 2022. "Parallel Stylometric Document Embeddings with Deep Learning Based Language Models in Literary Authorship Attribution," Mathematics, MDPI, vol. 10(5), pages 1-27, March.
    18. Matilde Trevisani & Arjuna Tuzzi, 2015. "A portrait of JASA: the History of Statistics through analysis of keyword counts in an early scientific journal," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(3), pages 1287-1304, May.
    19. Catalin Stoean & Daniel Lichtblau, 2020. "Author Identification Using Chaos Game Representation and Deep Learning," Mathematics, MDPI, vol. 8(11), pages 1-18, November.
    20. Ahmed Shamsul Arefin & Renato Vimieiro & Carlos Riveros & Hugh Craig & Pablo Moscato, 2014. "An Information Theoretic Clustering Approach for Unveiling Authorship Affinities in Shakespearean Era Plays and Poems," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-12, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:2:p:277-:d:726262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.