IDEAS home Printed from https://ideas.repec.org/p/uts/ppaper/2013-3.html
   My bibliography  Save this paper

Automated Authorship Attribution Using Advanced Signal Classification Techniques

Author

Listed:
  • Maryam Ebrahimpour

    (School of Electrical and Electronic Engineering, The University of Adelaide)

  • Talis Putnins

    (Finance Discipline Group, University of Technology Sydney)

  • Matthew J. Berryman

    (School of Electrical and Electronic Engineering, The University of Adelaide)

  • Andrew Allison

    (School of Electrical and Electronic Engineering, The University of Adelaide)

  • Brian W.-H. Ng

    (School of Electrical and Electronic Engineering, The University of Adelaide)

  • Derek Abbott

    (School of Electrical and Electronic Engineering, The University of Adelaide)

Abstract

In this paper, we develop two automated authorship attribution schemes, one based on Multiple Discriminant Analysis (MDA) and the other based on a Support Vector Machine (SVM). The classification features we exploit are based on word frequencies in the text. We adopt an approach of preprocessing each text by stripping it of all characters except a-z and space. This is in order to increase the portability of the software to different types of texts. We test the methodology on a corpus of undisputed English texts, and use leave-one-out cross validation to demonstrate classification accuracies in excess of 90%. We further test our methods on the Federalist Papers, which have a partly disputed authorship and a fair degree of scholarly consensus. And finally, we apply our methodology to the question of the authorship of the Letter to the Hebrews by comparing it against a number of original Greek texts of known authorship. These tests identify where some of the limitations lie, motivating a number of open questions for future work. An open source implementation of our methodology is freely available for use at https://github.com/matthewberryman/author-detection.

Suggested Citation

  • Maryam Ebrahimpour & Talis Putnins & Matthew J. Berryman & Andrew Allison & Brian W.-H. Ng & Derek Abbott, 2013. "Automated Authorship Attribution Using Advanced Signal Classification Techniques," Published Paper Series 2013-3, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
  • Handle: RePEc:uts:ppaper:2013-3
    as

    Download full text from publisher

    File URL: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0054998
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Efstathios Stamatatos, 2009. "A survey of modern authorship attribution methods," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(3), pages 538-556, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haoran Zhu & Lei Lei, 2022. "The Research Trends of Text Classification Studies (2000–2020): A Bibliometric Analysis," SAGE Open, , vol. 12(2), pages 21582440221, April.
    2. Diego R Amancio, 2015. "Probing the Topological Properties of Complex Networks Modeling Short Written Texts," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nils-Axel M?rner, 2018. "Evaluation of the Performance and Efficiency of the Automated Linguistic Features for Author Identification in Short Text Messages Using Different Variable Selection Techniques," Studies in Media and Communication, Redfame publishing, vol. 6(2), pages 83-102, December.
    2. Diego R Amancio, 2015. "Probing the Topological Properties of Complex Networks Modeling Short Written Texts," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-17, February.
    3. Sanda-Maria Avram & Mihai Oltean, 2022. "A Comparison of Several AI Techniques for Authorship Attribution on Romanian Texts," Mathematics, MDPI, vol. 10(23), pages 1-35, December.
    4. Ballandonne, Matthieu & Cersosimo, Igor, 2022. "Towards a “Text as Data” Approach in the History of Economics: An Application to Adam Smith’s Classics," OSF Preprints mg3zb, Center for Open Science.
    5. Malik Muhammad Saad Missen & Sajeeha Qureshi & Nadeem Salamat & Nadeem Akhtar & Hina Asmat & Mickaël Coustaty & V. B. Surya Prasath, 2020. "Scientometric analysis of social science and science disciplines in a developing nation: a case study of Pakistan in the last decade," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(1), pages 113-142, April.
    6. Matthew J. Schneider & Shawn Mankad, 2021. "A Two-Stage Authorship Attribution Method Using Text and Structured Data for De-Anonymizing User-Generated Content," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 8(3), pages 66-83, September.
    7. Kargin, Vladislav, 2016. "On variation of word frequencies in Russian literary texts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 328-334.
    8. Andi Rexha & Mark Kröll & Hermann Ziak & Roman Kern, 2018. "Authorship identification of documents with high content similarity," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(1), pages 223-237, April.
    9. Jacques Savoy & Olena Zubaryeva, 2012. "Simple and efficient classification scheme based on specific vocabulary," Computational Management Science, Springer, vol. 9(3), pages 401-415, August.
    10. Haoran Zhu & Lei Lei, 2022. "The Research Trends of Text Classification Studies (2000–2020): A Bibliometric Analysis," SAGE Open, , vol. 12(2), pages 21582440221, April.
    11. Silvia Corbara & Alejandro Moreo & Fabrizio Sebastiani, 2023. "Syllabic quantity patterns as rhythmic features for Latin authorship attribution," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(1), pages 128-141, January.
    12. Oleg Sobchuk & Artjoms Šeļa, 2024. "Computational thematics: comparing algorithms for clustering the genres of literary fiction," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-12, December.
    13. Jennifer A. Byrne & Cyril Labbé, 2017. "Striking similarities between publications from China describing single gene knockdown experiments in human cancer cell lines," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(3), pages 1471-1493, March.
    14. de Arruda, Henrique F. & Marinho, Vanessa Q. & Lima, Thales S. & Amancio, Diego R. & Costa, Luciano da F., 2018. "An image analysis approach to text analytics based on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 110-120.
    15. Stefano Sbalchiero & Maria Stella Righettini, 2017. "Rhetorical manifestation of institutional transformation," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(3), pages 1279-1296, May.
    16. Mihailo Škorić & Ranka Stanković & Milica Ikonić Nešić & Joanna Byszuk & Maciej Eder, 2022. "Parallel Stylometric Document Embeddings with Deep Learning Based Language Models in Literary Authorship Attribution," Mathematics, MDPI, vol. 10(5), pages 1-27, March.
    17. Matilde Trevisani & Arjuna Tuzzi, 2015. "A portrait of JASA: the History of Statistics through analysis of keyword counts in an early scientific journal," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(3), pages 1287-1304, May.
    18. Catalin Stoean & Daniel Lichtblau, 2020. "Author Identification Using Chaos Game Representation and Deep Learning," Mathematics, MDPI, vol. 8(11), pages 1-18, November.
    19. Ahmed Shamsul Arefin & Renato Vimieiro & Carlos Riveros & Hugh Craig & Pablo Moscato, 2014. "An Information Theoretic Clustering Approach for Unveiling Authorship Affinities in Shakespearean Era Plays and Poems," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-12, October.
    20. Ullah, Farhan & Jabbar, Sohail & Al-Turjman, Fadi, 2020. "Programmers' de-anonymization using a hybrid approach of abstract syntax tree and deep learning," Technological Forecasting and Social Change, Elsevier, vol. 159(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uts:ppaper:2013-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Duncan Ford (email available below). General contact details of provider: https://edirc.repec.org/data/sfutsau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.