IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v115y2018i1d10.1007_s11192-018-2661-6.html
   My bibliography  Save this article

Authorship identification of documents with high content similarity

Author

Listed:
  • Andi Rexha

    (Know-Center GmbH)

  • Mark Kröll

    (Know-Center GmbH)

  • Hermann Ziak

    (Know-Center GmbH)

  • Roman Kern

    (Know-Center GmbH)

Abstract

The goal of our work is inspired by the task of associating segments of text to their real authors. In this work, we focus on analyzing the way humans judge different writing styles. This analysis can help to better understand this process and to thus simulate/ mimic such behavior accordingly. Unlike the majority of the work done in this field (i.e. authorship attribution, plagiarism detection, etc.) which uses content features, we focus only on the stylometric, i.e. content-agnostic, characteristics of authors. Therefore, we conducted two pilot studies to determine, if humans can identify authorship among documents with high content similarity. The first was a quantitative experiment involving crowd-sourcing, while the second was a qualitative one executed by the authors of this paper. Both studies confirmed that this task is quite challenging. To gain a better understanding of how humans tackle such a problem, we conducted an exploratory data analysis on the results of the studies. In the first experiment, we compared the decisions against content features and stylometric features. While in the second, the evaluators described the process and the features on which their judgment was based. The findings of our detailed analysis could (1) help to improve algorithms such as automatic authorship attribution as well as plagiarism detection, (2) assist forensic experts or linguists to create profiles of writers, (3) support intelligence applications to analyze aggressive and threatening messages and (4) help editor conformity by adhering to, for instance, journal specific writing style.

Suggested Citation

  • Andi Rexha & Mark Kröll & Hermann Ziak & Roman Kern, 2018. "Authorship identification of documents with high content similarity," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(1), pages 223-237, April.
  • Handle: RePEc:spr:scient:v:115:y:2018:i:1:d:10.1007_s11192-018-2661-6
    DOI: 10.1007/s11192-018-2661-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-018-2661-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-018-2661-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Efstathios Stamatatos, 2009. "A survey of modern authorship attribution methods," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(3), pages 538-556, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guillaume Cabanac & Ingo Frommholz & Philipp Mayr, 2018. "Bibliometric-enhanced information retrieval: preface," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 1225-1227, August.
    2. Ankita Dhar & Himadri Mukherjee & Shibaprasad Sen & Md Obaidullah Sk & Amitabha Biswas & Teresa Gonçalves & Kaushik Roy, 2022. "Author Identification from Literary Articles with Visual Features: A Case Study with Bangla Documents," Future Internet, MDPI, vol. 14(10), pages 1-20, September.
    3. Tingting Zhang & Baozhen Lee & Qinghua Zhu, 2019. "Semantic measure of plagiarism using a hierarchical graph model," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(1), pages 209-239, October.
    4. Mark Bukowski & Sandra Geisler & Thomas Schmitz-Rode & Robert Farkas, 2020. "Feasibility of activity-based expert profiling using text mining of scientific publications and patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(2), pages 579-620, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nils-Axel M?rner, 2018. "Evaluation of the Performance and Efficiency of the Automated Linguistic Features for Author Identification in Short Text Messages Using Different Variable Selection Techniques," Studies in Media and Communication, Redfame publishing, vol. 6(2), pages 83-102, December.
    2. Maryam Ebrahimpour & Tālis J Putniņš & Matthew J Berryman & Andrew Allison & Brian W-H Ng & Derek Abbott, 2013. "Automated Authorship Attribution Using Advanced Signal Classification Techniques," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-12, February.
    3. Diego R Amancio, 2015. "Probing the Topological Properties of Complex Networks Modeling Short Written Texts," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-17, February.
    4. Sanda-Maria Avram & Mihai Oltean, 2022. "A Comparison of Several AI Techniques for Authorship Attribution on Romanian Texts," Mathematics, MDPI, vol. 10(23), pages 1-35, December.
    5. Ballandonne, Matthieu & Cersosimo, Igor, 2022. "Towards a “Text as Data” Approach in the History of Economics: An Application to Adam Smith’s Classics," OSF Preprints mg3zb, Center for Open Science.
    6. Malik Muhammad Saad Missen & Sajeeha Qureshi & Nadeem Salamat & Nadeem Akhtar & Hina Asmat & Mickaël Coustaty & V. B. Surya Prasath, 2020. "Scientometric analysis of social science and science disciplines in a developing nation: a case study of Pakistan in the last decade," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(1), pages 113-142, April.
    7. Matthew J. Schneider & Shawn Mankad, 2021. "A Two-Stage Authorship Attribution Method Using Text and Structured Data for De-Anonymizing User-Generated Content," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 8(3), pages 66-83, September.
    8. Kargin, Vladislav, 2016. "On variation of word frequencies in Russian literary texts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 328-334.
    9. Jacques Savoy & Olena Zubaryeva, 2012. "Simple and efficient classification scheme based on specific vocabulary," Computational Management Science, Springer, vol. 9(3), pages 401-415, August.
    10. Haoran Zhu & Lei Lei, 2022. "The Research Trends of Text Classification Studies (2000–2020): A Bibliometric Analysis," SAGE Open, , vol. 12(2), pages 21582440221, April.
    11. Silvia Corbara & Alejandro Moreo & Fabrizio Sebastiani, 2023. "Syllabic quantity patterns as rhythmic features for Latin authorship attribution," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(1), pages 128-141, January.
    12. Oleg Sobchuk & Artjoms Šeļa, 2024. "Computational thematics: comparing algorithms for clustering the genres of literary fiction," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-12, December.
    13. Jennifer A. Byrne & Cyril Labbé, 2017. "Striking similarities between publications from China describing single gene knockdown experiments in human cancer cell lines," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(3), pages 1471-1493, March.
    14. de Arruda, Henrique F. & Marinho, Vanessa Q. & Lima, Thales S. & Amancio, Diego R. & Costa, Luciano da F., 2018. "An image analysis approach to text analytics based on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 110-120.
    15. Stefano Sbalchiero & Maria Stella Righettini, 2017. "Rhetorical manifestation of institutional transformation," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(3), pages 1279-1296, May.
    16. Mihailo Škorić & Ranka Stanković & Milica Ikonić Nešić & Joanna Byszuk & Maciej Eder, 2022. "Parallel Stylometric Document Embeddings with Deep Learning Based Language Models in Literary Authorship Attribution," Mathematics, MDPI, vol. 10(5), pages 1-27, March.
    17. Matilde Trevisani & Arjuna Tuzzi, 2015. "A portrait of JASA: the History of Statistics through analysis of keyword counts in an early scientific journal," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(3), pages 1287-1304, May.
    18. Catalin Stoean & Daniel Lichtblau, 2020. "Author Identification Using Chaos Game Representation and Deep Learning," Mathematics, MDPI, vol. 8(11), pages 1-18, November.
    19. Ahmed Shamsul Arefin & Renato Vimieiro & Carlos Riveros & Hugh Craig & Pablo Moscato, 2014. "An Information Theoretic Clustering Approach for Unveiling Authorship Affinities in Shakespearean Era Plays and Poems," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-12, October.
    20. Ullah, Farhan & Jabbar, Sohail & Al-Turjman, Fadi, 2020. "Programmers' de-anonymization using a hybrid approach of abstract syntax tree and deep learning," Technological Forecasting and Social Change, Elsevier, vol. 159(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:115:y:2018:i:1:d:10.1007_s11192-018-2661-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.