IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i23p4596-d993009.html
   My bibliography  Save this article

A Polynomial Fitting Problem: The Orthogonal Distances Method

Author

Listed:
  • Luis Alberto Cantera-Cantera

    (Automation and Control Engineering Department, ESIME-IPN, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Luis Enrique Erro s/n, Mexico City C.P. 07738, Mexico)

  • Cristóbal Vargas-Jarillo

    (Automatic Control Department, CINVESTAV-IPN, Av. Instituto Politecnico Nacional 2508, Col. San Pedro Zacatenco, Mexico City C.P. 07360, Mexico)

  • Sergio Isaí Palomino-Reséndiz

    (Automation and Control Engineering Department, ESIME-IPN, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Luis Enrique Erro s/n, Mexico City C.P. 07738, Mexico)

  • Yair Lozano-Hernández

    (Unidad Profesional Interdisciplinaria de Ingeniería Campus Hidalgo, Instituto Politécnico Nacional, San Agustín Tlaxiaca C.P. 42162, Mexico)

  • Carlos Manuel Montelongo-Vázquez

    (Automation and Control Engineering Department, ESIME-IPN, Unidad Profesional Adolfo López Mateos, Zacatenco, Av. Luis Enrique Erro s/n, Mexico City C.P. 07738, Mexico)

Abstract

The classical curve-fitting problem to relate two variables, x and y , deals with polynomials. Generally, this problem is solved by the least squares method (LS), where the minimization function considers the vertical errors from the data points to the fitting curve. Another curve-fitting method is total least squares (TLS), which takes into account errors in both x and y variables. A further method is the orthogonal distances method (OD), which minimizes the sum of the squares of orthogonal distances from the data points to the fitting curve. In this work, we develop the OD method for the polynomial fitting of degree n and compare the TLS and OD methods. The results show that TLS and OD methods are not equivalent in general; however, both methods get the same estimates when a polynomial of degree 1 without an independent coefficient is considered. As examples, we consider the calibration curve-fitting problem of a R-type thermocouple by polynomials of degrees 1 to 4, with and without an independent coefficient, using the LS, TLS and OD methods.

Suggested Citation

  • Luis Alberto Cantera-Cantera & Cristóbal Vargas-Jarillo & Sergio Isaí Palomino-Reséndiz & Yair Lozano-Hernández & Carlos Manuel Montelongo-Vázquez, 2022. "A Polynomial Fitting Problem: The Orthogonal Distances Method," Mathematics, MDPI, vol. 10(23), pages 1-17, December.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:23:p:4596-:d:993009
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/23/4596/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/23/4596/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiangdong Sun & Jingrun Ji & Biying Ren & Chenxue Xie & Dan Yan, 2019. "Adaptive Forgetting Factor Recursive Least Square Algorithm for Online Identification of Equivalent Circuit Model Parameters of a Lithium-Ion Battery," Energies, MDPI, vol. 12(12), pages 1-15, June.
    2. Carl Eckart & Gale Young, 1936. "The approximation of one matrix by another of lower rank," Psychometrika, Springer;The Psychometric Society, vol. 1(3), pages 211-218, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sewell, Daniel K., 2018. "Visualizing data through curvilinear representations of matrices," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 255-270.
    2. Kohei Adachi & Nickolay T. Trendafilov, 2016. "Sparse principal component analysis subject to prespecified cardinality of loadings," Computational Statistics, Springer, vol. 31(4), pages 1403-1427, December.
    3. Norman Cliff, 1962. "Analytic rotation to a functional relationship," Psychometrika, Springer;The Psychometric Society, vol. 27(3), pages 283-295, September.
    4. Jushan Bai & Serena Ng, 2020. "Simpler Proofs for Approximate Factor Models of Large Dimensions," Papers 2008.00254, arXiv.org.
    5. Adele Ravagnani & Fabrizio Lillo & Paola Deriu & Piero Mazzarisi & Francesca Medda & Antonio Russo, 2024. "Dimensionality reduction techniques to support insider trading detection," Papers 2403.00707, arXiv.org, revised May 2024.
    6. Alfredo García-Hiernaux & José Casals & Miguel Jerez, 2012. "Estimating the system order by subspace methods," Computational Statistics, Springer, vol. 27(3), pages 411-425, September.
    7. Mitzi Cubilla‐Montilla & Ana‐Belén Nieto‐Librero & Ma Purificación Galindo‐Villardón & Ma Purificación Vicente Galindo & Isabel‐María Garcia‐Sanchez, 2019. "Are cultural values sufficient to improve stakeholder engagement human and labour rights issues?," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 26(4), pages 938-955, July.
    8. Stegeman, Alwin, 2016. "A new method for simultaneous estimation of the factor model parameters, factor scores, and unique parts," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 189-203.
    9. Jos Berge & Henk Kiers, 1993. "An alternating least squares method for the weighted approximation of a symmetric matrix," Psychometrika, Springer;The Psychometric Society, vol. 58(1), pages 115-118, March.
    10. Shimeng Huang & Henry Wolkowicz, 2018. "Low-rank matrix completion using nuclear norm minimization and facial reduction," Journal of Global Optimization, Springer, vol. 72(1), pages 5-26, September.
    11. Antti J. Tanskanen & Jani Lukkarinen & Kari Vatanen, 2016. "Random selection of factors preserves the correlation structure in a linear factor model to a high degree," Papers 1604.05896, arXiv.org, revised Dec 2018.
    12. Ali Habibnia & Esfandiar Maasoumi, 2021. "Forecasting in Big Data Environments: An Adaptable and Automated Shrinkage Estimation of Neural Networks (AAShNet)," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 363-381, December.
    13. Jin-Xing Liu & Yong Xu & Chun-Hou Zheng & Yi Wang & Jing-Yu Yang, 2012. "Characteristic Gene Selection via Weighting Principal Components by Singular Values," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-10, July.
    14. Kargin, V. & Onatski, A., 2008. "Curve forecasting by functional autoregression," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2508-2526, November.
    15. Yoshio Takane & Forrest Young & Jan Leeuw, 1977. "Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 42(1), pages 7-67, March.
    16. Aldrin, Magne, 1996. "Moderate projection pursuit regression for multivariate response data," Computational Statistics & Data Analysis, Elsevier, vol. 21(5), pages 501-531, May.
    17. W. Gibson, 1962. "On the least-squares orthogonalization of an oblique transformation," Psychometrika, Springer;The Psychometric Society, vol. 27(2), pages 193-195, June.
    18. Gordana Ispirova & Tome Eftimov & Barbara Koroušić Seljak, 2020. "P-NUT: Predicting NUTrient Content from Short Text Descriptions," Mathematics, MDPI, vol. 8(10), pages 1-21, October.
    19. Chester Harris, 1955. "Separation of data as a principle in factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 20(1), pages 23-28, March.
    20. Firoozye, Nikan & Tan, Vincent & Zohren, Stefan, 2023. "Canonical portfolios: Optimal asset and signal combination," Journal of Banking & Finance, Elsevier, vol. 154(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:23:p:4596-:d:993009. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.