IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v115y2020i532p2084-2099.html
   My bibliography  Save this article

Kernel Meets Sieve: Post-Regularization Confidence Bands for Sparse Additive Model

Author

Listed:
  • Junwei Lu
  • Mladen Kolar
  • Han Liu

Abstract

We develop a novel procedure for constructing confidence bands for components of a sparse additive model. Our procedure is based on a new kernel-sieve hybrid estimator that combines two most popular nonparametric estimation methods in the literature, the kernel regression and the spline method, and is of interest in its own right. Existing methods for fitting sparse additive model are primarily based on sieve estimators, while the literature on confidence bands for nonparametric models are primarily based upon kernel or local polynomial estimators. Our kernel-sieve hybrid estimator combines the best of both worlds and allows us to provide a simple procedure for constructing confidence bands in high-dimensional sparse additive models. We prove that the confidence bands are asymptotically honest by studying approximation with a Gaussian process. Thorough numerical results on both synthetic data and real-world neuroscience data are provided to demonstrate the efficacy of the theory. Supplementary materials for this article are available online.

Suggested Citation

  • Junwei Lu & Mladen Kolar & Han Liu, 2020. "Kernel Meets Sieve: Post-Regularization Confidence Bands for Sparse Additive Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(532), pages 2084-2099, December.
  • Handle: RePEc:taf:jnlasa:v:115:y:2020:i:532:p:2084-2099
    DOI: 10.1080/01621459.2019.1689984
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2019.1689984
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2019.1689984?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qingliang Fan & Zijian Guo & Ziwei Mei & Cun-Hui Zhang, 2023. "Inference for Nonlinear Endogenous Treatment Effects Accounting for High-Dimensional Covariate Complexity," Papers 2310.08063, arXiv.org, revised Jun 2024.
    2. Philipp Bach & Sven Klaassen & Jannis Kueck & Martin Spindler, 2020. "Estimation and Uniform Inference in Sparse High-Dimensional Additive Models," Papers 2004.01623, arXiv.org, revised Apr 2024.
    3. Haofeng Wang & Hongxia Jin & Xuejun Jiang & Jingzhi Li, 2022. "Model Selection for High Dimensional Nonparametric Additive Models via Ridge Estimation," Mathematics, MDPI, vol. 10(23), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:115:y:2020:i:532:p:2084-2099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.