IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i23p4436-d983090.html
   My bibliography  Save this article

Deterioration Model for Reinforced Concrete Bridge Girders Based on Survival Analysis

Author

Listed:
  • Li Li

    (School of Mechanics and Engineering Science, Shanghai University, Shanghai 200044, China)

  • Yu Lu

    (School of Mechanics and Engineering Science, Shanghai University, Shanghai 200044, China)

  • Miaojuan Peng

    (School of Mechanics and Engineering Science, Shanghai University, Shanghai 200044, China)

Abstract

The prediction of bridge service performance is essential for bridge maintenance, operation, and decision making. As a key component of the superstructure, the performance of the main girders is critical to the structural safety of the bridge. This study makes full use of the inspection records from the Bridge Management System (BMS) in Shanghai and performs pre-processing work on a large amount of data. Recent advances in survival analysis were utilized to investigate the inspection records of over 40,000 reinforced concrete bridge main girders over a 14-year period. Survival analysis methods based on the Weibull distribution were used to predict the service performance of the main girders, and, in addition, a COX proportional hazards model was used to analyze the effect of different covariates on the survival of the main girders. The results show that the deterioration rate of main girders increases with age, with an average life of 87 years for main girders in Shanghai. The grade of the road on which the bridge is located and the position of the main girder in the bridge superstructure have a significant impact on the probability of survival of the main girder. It can be concluded that more attention should be paid to the inspection and maintenance of side girders on branch roads to reduce the pressure on bridge management in the future. Furthermore, the analysis in this study found that the deterioration rate of the main girders is faster than the deterioration rate of the whole bridge and superstructure, and, therefore, more attention and necessary preventive maintenance measures should be taken in the maintenance and management of the main girders.

Suggested Citation

  • Li Li & Yu Lu & Miaojuan Peng, 2022. "Deterioration Model for Reinforced Concrete Bridge Girders Based on Survival Analysis," Mathematics, MDPI, vol. 10(23), pages 1-16, November.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:23:p:4436-:d:983090
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/23/4436/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/23/4436/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Li-Pang, 2019. "Semiparametric estimation for cure survival model with left-truncated and right-censored data and covariate measurement error," Statistics & Probability Letters, Elsevier, vol. 154(C), pages 1-1.
    2. Mark Thackham & Jun Ma, 2020. "On maximum likelihood estimation of the semi-parametric Cox model with time-varying covariates," Journal of Applied Statistics, Taylor & Francis Journals, vol. 47(9), pages 1511-1528, June.
    3. Madanat, S M & Park, Sejung & Kuhn, K D, 2006. "Adaptive Optimization and Systematic Probing of Infrastructure System Maintenance Policies under Model Uncertainty," University of California Transportation Center, Working Papers qt4fb7k5rc, University of California Transportation Center.
    4. Saleh Abu Dabous & Sabah Alkass, 2008. "Decision support method for multi-criteria selection of bridge rehabilitation strategy," Construction Management and Economics, Taylor & Francis Journals, vol. 26(8), pages 883-893.
    5. Calvert, Gareth & Neves, Luis & Andrews, John & Hamer, Matthew, 2020. "Multi-defect modelling of bridge deterioration using truncated inspection records," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    6. M Black & A T Brint & J R Brailsford, 2005. "A semi-Markov approach for modelling asset deterioration," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(11), pages 1241-1249, November.
    7. Sanjay S. Wakchaure & Kumar Neeraj Jha, 2012. "Determination of bridge health index using analytical hierarchy process," Construction Management and Economics, Taylor & Francis Journals, vol. 30(2), pages 133-149, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Park, Chong Hyun & Lim, Heejong, 2021. "A parametric approach to integer linear fractional programming: Newton’s and Hybrid-Newton methods for an optimal road maintenance problem," European Journal of Operational Research, Elsevier, vol. 289(3), pages 1030-1039.
    2. Pugliese, F. & De Risi, R. & Sarno, L. Di, 2022. "Reliability assessment of existing RC bridges with spatially-variable pitting corrosion subjected to increasing traffic demand," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    3. A Brint & J Bridgeman & M Black, 2009. "The rise, current position and future direction of asset management in utility industries," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 106-113, May.
    4. Xu, Gaowei & Azhari, Fae, 2022. "Data-driven optimization of repair schemes and inspection intervals for highway bridges," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    5. Seyedshohadaie, S. Reza & Damnjanovic, Ivan & Butenko, Sergiy, 2010. "Risk-based maintenance and rehabilitation decisions for transportation infrastructure networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(4), pages 236-248, May.
    6. Sathaye, Nakul & Madanat, Samer, 2011. "A bottom-up solution for the multi-facility optimal pavement resurfacing problem," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 1004-1017, August.
    7. Dan Su & Yi-Sheng Liu & Xin-Tong Li & Xiao-Yan Chen & Dong-Han Li, 2020. "Management Path of Concrete Beam Bridge in China from the Perspective of Sustainable Development," Sustainability, MDPI, vol. 12(17), pages 1-22, September.
    8. Ondřej Dvouletý & Ivana Svobodová & Nina Bočková & Jarmila Duháček Šebestová, 2024. "Becoming a First-time Entrepreneur in 40s and Older: Lessons from Survival Analysis," Working Papers 0076, Silesian University, School of Business Administration.
    9. Charles-Antoine Robelin & Samer M. Madanat, 2008. "Reliability-Based System-Level Optimization of Bridge Maintenance and Replacement Decisions," Transportation Science, INFORMS, vol. 42(4), pages 508-513, November.
    10. Yuegang Song & Ruibing Wu, 2022. "The Impact of Financial Enterprises’ Excessive Financialization Risk Assessment for Risk Control based on Data Mining and Machine Learning," Computational Economics, Springer;Society for Computational Economics, vol. 60(4), pages 1245-1267, December.
    11. Durango-Cohen, Pablo L. & Madanat, Samer M., 2008. "Optimization of inspection and maintenance decisions for infrastructure facilities under performance model uncertainty: A quasi-Bayes approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(8), pages 1074-1085, October.
    12. Orcesi, André D. & Cremona, Christian F., 2010. "A bridge network maintenance framework for Pareto optimization of stakeholders/users costs," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1230-1243.
    13. Rafic Faddoul & Abdul-Hamid Soubra & Wassim Raphael & Alaa Chateauneuf, 2013. "Extension of dynamic programming models for management optimization from single structure to multi-structures level," Post-Print hal-01006860, HAL.
    14. Medina-Olivares, Victor & Calabrese, Raffaella & Crook, Jonathan & Lindgren, Finn, 2023. "Joint models for longitudinal and discrete survival data in credit scoring," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1457-1473.
    15. Vega, Manuel A. & Hu, Zhen & Fillmore, Travis B. & Smith, Matthew D. & Todd, Michael D., 2021. "A Novel Framework for Integration of Abstracted Inspection Data and Structural Health Monitoring for Damage Prognosis of Miter Gates," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    16. Yingnan Yang & Hongming Xie, 2021. "Determination of Optimal MR&R Strategy and Inspection Intervals to Support Infrastructure Maintenance Decision Making," Sustainability, MDPI, vol. 13(5), pages 1-10, March.
    17. Yang, Yiming & Peng, Jianxin & Cai, C.S. & Zhou, Yadong & Wang, Lei & Zhang, Jianren, 2022. "Time-dependent reliability assessment of aging structures considering stochastic resistance degradation process," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    18. Ding, Wenzhe & Bai, Xiang & Wang, Qingwei & Long, Fang & Li, Hailin & Wu, Zhengrong & Liu, Jian & Yao, Huisheng & Yang, Hong, 2024. "A truncated test scheme design method for success-failure in-orbit tests," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    19. Li‐Pang Chen & Bangxu Qiu, 2023. "Analysis of length‐biased and partly interval‐censored survival data with mismeasured covariates," Biometrics, The International Biometric Society, vol. 79(4), pages 3929-3940, December.
    20. Faddoul, R. & Raphael, W. & Chateauneuf, A., 2018. "Maintenance optimization of series systems subject to reliability constraints," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 179-188.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:23:p:4436-:d:983090. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.