IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i22p4216-d969924.html
   My bibliography  Save this article

Reliability Assessment of Heavily Censored Data Based on E-Bayesian Estimation

Author

Listed:
  • Tianyu Liu

    (College of Systems Engineering, National University of Defense Technology, Changsha 410073, China)

  • Lulu Zhang

    (College of Systems Engineering, National University of Defense Technology, Changsha 410073, China)

  • Guang Jin

    (College of Systems Engineering, National University of Defense Technology, Changsha 410073, China)

  • Zhengqiang Pan

    (College of Systems Engineering, National University of Defense Technology, Changsha 410073, China)

Abstract

The classic E-Bayesian estimation methods can only derive point estimation of the reliability parameters. In this paper, an improved E-Bayesian estimation method is proposed to evaluate product reliability under heavily censored data, which can achieve both point and confidence interval estimation for the reliability parameters. Firstly, by analyzing the concavity & convexity and function characteristics of the Weibull distribution, the value of product failure probability is limited to a certain range. Secondly, an improved weighted least squares method is utilized to construct the confidence interval estimation model of reliability parameters. Simulation results show that the proposed approach can significantly improve the calculation speed and estimation accuracy with just very few robustness reductions. Finally, a real-world case study of the sun gear transmission mechanism is used to validate the effectiveness of the presented method.

Suggested Citation

  • Tianyu Liu & Lulu Zhang & Guang Jin & Zhengqiang Pan, 2022. "Reliability Assessment of Heavily Censored Data Based on E-Bayesian Estimation," Mathematics, MDPI, vol. 10(22), pages 1-14, November.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:22:p:4216-:d:969924
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/22/4216/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/22/4216/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. F. Yousefzadeh, 2017. "E-Bayesian and hierarchical Bayesian estimations for the system reliability parameter based on asymmetric loss function," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(1), pages 1-8, January.
    2. Ping Jiang & Yunyan Xing & Xiang Jia & Bo Guo, 2015. "Weibull Failure Probability Estimation Based on Zero-Failure Data," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-8, May.
    3. Joarder, Avijit & Krishna, Hare & Kundu, Debasis, 2011. "Inferences on Weibull parameters with conventional type-I censoring," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 1-11, January.
    4. Liesa Denecke & Christine Müller, 2014. "New robust tests for the parameters of the Weibull distribution for complete and censored data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(5), pages 585-607, July.
    5. Zhang, L.F. & Xie, M. & Tang, L.C., 2007. "A study of two estimation approaches for parameters of Weibull distribution based on WPP," Reliability Engineering and System Safety, Elsevier, vol. 92(3), pages 360-368.
    6. Tan, Zhibin, 2009. "A new approach to MLE of Weibull distribution with interval data," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 394-403.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongjun Chen & Xiaojian Li & Jin Wang & Mei Liu & Chaoxun Cai & Yuefeng Shi, 2023. "Research on the Application of Fuzzy Bayesian Network in Risk Assessment of Catenary Construction," Mathematics, MDPI, vol. 11(7), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia, Xiang & Wang, Dong & Jiang, Ping & Guo, Bo, 2016. "Inference on the reliability of Weibull distribution with multiply Type-I censored data," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 171-181.
    2. Xiang Jia & Saralees Nadarajah & Bo Guo, 2020. "Inference on q-Weibull parameters," Statistical Papers, Springer, vol. 61(2), pages 575-593, April.
    3. Li, Der-Chiang & Lin, Liang-Sian, 2013. "A new approach to assess product lifetime performance for small data sets," European Journal of Operational Research, Elsevier, vol. 230(2), pages 290-298.
    4. Tzong-Ru Tsai & Yuhlong Lio & Jyun-You Chiang & Yi-Jia Huang, 2022. "A New Process Performance Index for the Weibull Distribution with a Type-I Hybrid Censoring Scheme," Mathematics, MDPI, vol. 10(21), pages 1-17, November.
    5. Xiaowei Dong & Feng Sun & Fangchao Xu & Qi Zhang & Ran Zhou & Liang Zhang & Zhongwei Liang, 2022. "Three-Parameter Estimation Method of Multiple Hybrid Weibull Distribution Based on the EM Optimization Algorithm," Mathematics, MDPI, vol. 10(22), pages 1-17, November.
    6. Gupta, Ashutosh & Mukherjee, Bhaswati & Upadhyay, S.K., 2008. "Weibull extension model: A Bayes study using Markov chain Monte Carlo simulation," Reliability Engineering and System Safety, Elsevier, vol. 93(10), pages 1434-1443.
    7. Hassan M. Okasha & Abdulkareem M. Basheer & Yuhlong Lio, 2022. "The E-Bayesian Methods for the Inverse Weibull Distribution Rate Parameter Based on Two Types of Error Loss Functions," Mathematics, MDPI, vol. 10(24), pages 1-27, December.
    8. Xun Xiao & Amitava Mukherjee & Min Xie, 2016. "Estimation procedures for grouped data – a comparative study," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(11), pages 2110-2130, August.
    9. Zhuang, Liangliang & Xu, Ancha & Pang, Jihong, 2021. "Product reliability analysis based on heavily censored interval data with batch effects," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    10. Hong, H.P., 2013. "Selection of regressand for fitting the extreme value distributions using the ordinary, weighted and generalized least-squares methods," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 71-80.
    11. Zhu, Tiefeng, 2020. "Reliability estimation for two-parameter Weibull distribution under block censoring," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    12. Ingo Hoffmann & Christoph J. Börner, 2021. "The risk function of the goodness-of-fit tests for tail models," Statistical Papers, Springer, vol. 62(4), pages 1853-1869, August.
    13. Renyan Jiang, 2022. "A novel parameter estimation method for the Weibull distribution on heavily censored data," Journal of Risk and Reliability, , vol. 236(2), pages 307-316, April.
    14. Jiang, R., 2014. "A drawback and an improvement of the classical Weibull probability plot," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 135-142.
    15. Pierre‐Yves Deléamont & Elvezio Ronchetti, 2022. "Robust inference with censored survival data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1496-1533, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:22:p:4216-:d:969924. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.