Solving a Class of High-Order Elliptic PDEs Using Deep Neural Networks Based on Its Coupled Scheme
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Justin Sirignano & Konstantinos Spiliopoulos, 2017. "DGM: A deep learning algorithm for solving partial differential equations," Papers 1708.07469, arXiv.org, revised Sep 2018.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- William Lefebvre & Enzo Miller, 2021. "Linear-quadratic stochastic delayed control and deep learning resolution," Working Papers hal-03145949, HAL.
- A. Max Reppen & H. Mete Soner & Valentin Tissot-Daguette, 2022. "Deep Stochastic Optimization in Finance," Papers 2205.04604, arXiv.org.
- Sebastian Jaimungal, 2022. "Reinforcement learning and stochastic optimisation," Finance and Stochastics, Springer, vol. 26(1), pages 103-129, January.
- Rong Du & Duy-Minh Dang, 2023. "Fourier Neural Network Approximation of Transition Densities in Finance," Papers 2309.03966, arXiv.org, revised Sep 2024.
- Gero Junike & Hauke Stier, 2024. "Enhancing Fourier pricing with machine learning," Papers 2412.05070, arXiv.org.
- Ali Al-Aradi & Adolfo Correia & Danilo de Frietas Naiff & Gabriel Jardim & Yuri Saporito, 2019. "Extensions of the Deep Galerkin Method," Papers 1912.01455, arXiv.org, revised Apr 2022.
- Salah A. Faroughi & Ramin Soltanmohammadi & Pingki Datta & Seyed Kourosh Mahjour & Shirko Faroughi, 2023. "Physics-Informed Neural Networks with Periodic Activation Functions for Solute Transport in Heterogeneous Porous Media," Mathematics, MDPI, vol. 12(1), pages 1-23, December.
- Jiequn Han & Ruimeng Hu & Jihao Long, 2020. "Convergence of Deep Fictitious Play for Stochastic Differential Games," Papers 2008.05519, arXiv.org, revised Mar 2021.
- Dehghani, Hamidreza & Zilian, Andreas, 2021. "A hybrid MGA-MSGD ANN training approach for approximate solution of linear elliptic PDEs," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 398-417.
- Jesús Fernández-Villaverde & Galo Nuño & Jesse Perla, 2024.
"Taming the Curse of Dimensionality: Quantitative Economics with Deep Learning,"
NBER Working Papers
33117, National Bureau of Economic Research, Inc.
- Jesús Fernández-Villaverde & Galo Nuño & Jesse Perla, 2024. "Taming the curse of dimensionality: quantitative economics with deep learning," Working Papers 2444, Banco de España.
- Jesús Fernández-Villaverde & Galo Nuno & Jesse Perla, 2024. "Taming the Curse of Dimensionality:Quantitative Economics with Deep Learning," PIER Working Paper Archive 24-034, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Jésus Fernández-Villaverde & Galo Nuño & Jesse Perla & Jesús Fernández-Villaverde, 2024. "Taming the Curse of Dimensionality: Quantitative Economics with Deep Learning," CESifo Working Paper Series 11448, CESifo.
- Jialiang Luo & Harry Zheng, 2023. "Deep Neural Network Solution for Finite State Mean Field Game with Error Estimation," Dynamic Games and Applications, Springer, vol. 13(3), pages 859-896, September.
- Olivier Bokanowski & Averil Prost & Xavier Warin, 2023. "Neural networks for first order HJB equations and application to front propagation with obstacle terms," Partial Differential Equations and Applications, Springer, vol. 4(5), pages 1-36, October.
- Ying Li & Longxiang Xu & Shihui Ying, 2022. "DWNN: Deep Wavelet Neural Network for Solving Partial Differential Equations," Mathematics, MDPI, vol. 10(12), pages 1-35, June.
- Li, Wei & Zhang, Ying & Huang, Dongmei & Rajic, Vesna, 2022. "Study on stationary probability density of a stochastic tumor-immune model with simulation by ANN algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
- Li, Jiaheng & Li, Biao, 2022. "Mix-training physics-informed neural networks for the rogue waves of nonlinear Schrödinger equation," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
- Laura Leal & Mathieu Lauri`ere & Charles-Albert Lehalle, 2020. "Learning a functional control for high-frequency finance," Papers 2006.09611, arXiv.org, revised Feb 2021.
- Antoine Jacquier & Zan Zuric, 2023. "Random neural networks for rough volatility," Papers 2305.01035, arXiv.org.
- José Alberto Rodrigues, 2024. "Using Physics-Informed Neural Networks (PINNs) for Tumor Cell Growth Modeling," Mathematics, MDPI, vol. 12(8), pages 1-9, April.
- Zhang, Jincheng & Zhao, Xiaowei, 2021. "Spatiotemporal wind field prediction based on physics-informed deep learning and LIDAR measurements," Applied Energy, Elsevier, vol. 288(C).
- Lukas Gonon, 2022. "Deep neural network expressivity for optimal stopping problems," Papers 2210.10443, arXiv.org.
More about this item
Keywords
biharmonic equation; coupled scheme; DNN; variational form; Fourier mapping;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:22:p:4186-:d:967347. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.