IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i22p4168-d966067.html
   My bibliography  Save this article

A Quantum-Behaved Particle Swarm Optimization Algorithm on Riemannian Manifolds

Author

Listed:
  • Yeerjiang Halimu

    (Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, No. 1800, Lihu Avenue, Wuxi 214122, China
    School of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi 830052, China)

  • Chao Zhou

    (Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, No. 1800, Lihu Avenue, Wuxi 214122, China)

  • Qi You

    (Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, No. 1800, Lihu Avenue, Wuxi 214122, China)

  • Jun Sun

    (Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, No. 1800, Lihu Avenue, Wuxi 214122, China)

Abstract

The Riemannian manifold optimization algorithms have been widely used in machine learning, computer vision, data mining, and other technical fields. Most of these algorithms are based on the geodesic or the retracement operator and use the classical methods (i.e., the steepest descent method, the conjugate gradient method, the Newton method, etc.) to solve engineering optimization problems. However, they lack the ability to solve non-differentiable mathematical models and ensure global convergence for non-convex manifolds. Considering this issue, this paper proposes a quantum-behaved particle swarm optimization (QPSO) algorithm on Riemannian manifolds named RQPSO. In this algorithm, the quantum-behaved particles are randomly distributed on the manifold surface and iteratively updated during the whole search process. Then, the vector transfer operator is used to translate the guiding vectors, which are not in the same Euclidean space, to the tangent space of the particles. Through the searching of these guiding vectors, we can achieve the retracement and update of points and finally obtain the optimized result. The proposed RQPSO algorithm does not depend on the expression form of a problem and could deal with various engineering technical problems, including both differentiable and non-differentiable ones. To verify the performance of RQPSO experimentally, we compare it with some traditional algorithms on three common matrix manifold optimization problems. The experimental results show that RQPSO has better performance than its competitors in terms of calculation speed and optimization efficiency.

Suggested Citation

  • Yeerjiang Halimu & Chao Zhou & Qi You & Jun Sun, 2022. "A Quantum-Behaved Particle Swarm Optimization Algorithm on Riemannian Manifolds," Mathematics, MDPI, vol. 10(22), pages 1-20, November.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:22:p:4168-:d:966067
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/22/4168/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/22/4168/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wenyu Sun & Ya-Xiang Yuan, 2006. "Optimization Theory and Methods," Springer Optimization and Its Applications, Springer, number 978-0-387-24976-6, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuqi Fan & Sheng Zhang & Yaping Wang & Di Xu & Qisong Zhang, 2023. "An Improved Flow Direction Algorithm for Engineering Optimization Problems," Mathematics, MDPI, vol. 11(9), pages 1-31, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yasushi Narushima & Shummin Nakayama & Masashi Takemura & Hiroshi Yabe, 2023. "Memoryless Quasi-Newton Methods Based on the Spectral-Scaling Broyden Family for Riemannian Optimization," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 639-664, May.
    2. Saha, Tanay & Rakshit, Suman & Khare, Swanand R., 2023. "Linearly structured quadratic model updating using partial incomplete eigendata," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    3. Guang Li & Paat Rusmevichientong & Huseyin Topaloglu, 2015. "The d -Level Nested Logit Model: Assortment and Price Optimization Problems," Operations Research, INFORMS, vol. 63(2), pages 325-342, April.
    4. Zheng, Sanpeng & Feng, Renzhong, 2023. "A variable projection method for the general radial basis function neural network," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    5. Jörg Fliege & Andrey Tin & Alain Zemkoho, 2021. "Gauss–Newton-type methods for bilevel optimization," Computational Optimization and Applications, Springer, vol. 78(3), pages 793-824, April.
    6. Hai-Jun Wang & Qin Ni, 2010. "A Convex Approximation Method For Large Scale Linear Inequality Constrained Minimization," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 27(01), pages 85-101.
    7. Chen, Liang, 2016. "A high-order modified Levenberg–Marquardt method for systems of nonlinear equations with fourth-order convergence," Applied Mathematics and Computation, Elsevier, vol. 285(C), pages 79-93.
    8. Ji, Li-Qun, 2015. "An assessment of agricultural residue resources for liquid biofuel production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 561-575.
    9. Babaie-Kafaki, Saman & Ghanbari, Reza, 2014. "The Dai–Liao nonlinear conjugate gradient method with optimal parameter choices," European Journal of Operational Research, Elsevier, vol. 234(3), pages 625-630.
    10. Marko Miladinović & Predrag Stanimirović & Sladjana Miljković, 2011. "Scalar Correction Method for Solving Large Scale Unconstrained Minimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 151(2), pages 304-320, November.
    11. Wei Bian & Xiaojun Chen, 2017. "Optimality and Complexity for Constrained Optimization Problems with Nonconvex Regularization," Mathematics of Operations Research, INFORMS, vol. 42(4), pages 1063-1084, November.
    12. Yutao Zheng & Bing Zheng, 2017. "Two New Dai–Liao-Type Conjugate Gradient Methods for Unconstrained Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 502-509, November.
    13. Xiaojing Zhu & Hiroyuki Sato, 2020. "Riemannian conjugate gradient methods with inverse retraction," Computational Optimization and Applications, Springer, vol. 77(3), pages 779-810, December.
    14. Li, Jinqing & Ma, Jun, 2019. "Maximum penalized likelihood estimation of additive hazards models with partly interval censoring," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 170-180.
    15. Zohre Aminifard & Saman Babaie-Kafaki, 2019. "An optimal parameter choice for the Dai–Liao family of conjugate gradient methods by avoiding a direction of the maximum magnification by the search direction matrix," 4OR, Springer, vol. 17(3), pages 317-330, September.
    16. Chen, Wang & Yang, Xinmin & Zhao, Yong, 2023. "Memory gradient method for multiobjective optimization," Applied Mathematics and Computation, Elsevier, vol. 443(C).
    17. Abolfazl Gharaei & Alireza Amjadian & Ali Shavandi & Amir Amjadian, 2023. "An augmented Lagrangian approach with general constraints to solve nonlinear models of the large-scale reliable inventory systems," Journal of Combinatorial Optimization, Springer, vol. 45(2), pages 1-37, March.
    18. Roozbeh, Mahdi, 2016. "Robust ridge estimator in restricted semiparametric regression models," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 127-144.
    19. Chengjin Li, 2014. "A New Approximation of the Matrix Rank Function and Its Application to Matrix Rank Minimization," Journal of Optimization Theory and Applications, Springer, vol. 163(2), pages 569-594, November.
    20. Maldonado, Sebastián & López, Julio & Vairetti, Carla, 2020. "Profit-based churn prediction based on Minimax Probability Machines," European Journal of Operational Research, Elsevier, vol. 284(1), pages 273-284.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:22:p:4168-:d:966067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.