IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i21p4122-d963742.html
   My bibliography  Save this article

On the Non-Local Boundary Value Problem from the Probabilistic Viewpoint

Author

Listed:
  • Mirko D’Ovidio

    (Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Via A. Scarpa 10, 00161 Rome, Italy)

Abstract

We provide a short introduction of new and well-known facts relating non-local operators and irregular domains. Cauchy problems and boundary value problems are considered in case non-local operators are involved. Such problems lead to anomalous behavior on the bulk and on the surface of a given domain, respectively. Such a behavior should be considered (in a macroscopic viewpoint) in order to describe regular motion on irregular domains (in the microscopic viewpoint).

Suggested Citation

  • Mirko D’Ovidio, 2022. "On the Non-Local Boundary Value Problem from the Probabilistic Viewpoint," Mathematics, MDPI, vol. 10(21), pages 1-26, November.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:21:p:4122-:d:963742
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/21/4122/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/21/4122/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Zhen-Qing, 2017. "Time fractional equations and probabilistic representation," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 168-174.
    2. Meerschaert, Mark M. & Scheffler, Hans-Peter, 2008. "Triangular array limits for continuous time random walks," Stochastic Processes and their Applications, Elsevier, vol. 118(9), pages 1606-1633, September.
    3. S. K. Ntouyas & P. Ch. Tsamatos, 1997. "Initial and boundary value problems for partial functional differential equations," International Journal of Stochastic Analysis, Hindawi, vol. 10, pages 1-12, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. Escalona & F. Ordóñez & I. Kauak, 2017. "Critical level rationing in inventory systems with continuously distributed demand," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 273-301, January.
    2. Magdziarz, M. & Scheffler, H.P. & Straka, P. & Zebrowski, P., 2015. "Limit theorems and governing equations for Lévy walks," Stochastic Processes and their Applications, Elsevier, vol. 125(11), pages 4021-4038.
    3. Kumar, A. & Vellaisamy, P., 2015. "Inverse tempered stable subordinators," Statistics & Probability Letters, Elsevier, vol. 103(C), pages 134-141.
    4. Cho, Soobin & Kim, Panki, 2020. "Estimates on the tail probabilities of subordinators and applications to general time fractional equations," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4392-4443.
    5. Giacomo Ascione & Nikolai Leonenko & Enrica Pirozzi, 2022. "Non-local Solvable Birth–Death Processes," Journal of Theoretical Probability, Springer, vol. 35(2), pages 1284-1323, June.
    6. Kondratiev, Yuri & da Silva, José L., 2023. "Compound Poisson processes: Potentials, Green measures and random times," Statistics & Probability Letters, Elsevier, vol. 197(C).
    7. Meerschaert, Mark M. & Nane, Erkan & Xiao, Yimin, 2013. "Fractal dimension results for continuous time random walks," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1083-1093.
    8. Beghin, Luisa & Macci, Claudio & Ricciuti, Costantino, 2020. "Random time-change with inverses of multivariate subordinators: Governing equations and fractional dynamics," Stochastic Processes and their Applications, Elsevier, vol. 130(10), pages 6364-6387.
    9. Torricelli, Lorenzo, 2020. "Trade duration risk in subdiffusive financial models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    10. A. Kumar & J. Gajda & A. Wyłomańska & R. Połoczański, 2019. "Fractional Brownian Motion Delayed by Tempered and Inverse Tempered Stable Subordinators," Methodology and Computing in Applied Probability, Springer, vol. 21(1), pages 185-202, March.
    11. Marjorie Hahn & Kei Kobayashi & Sabir Umarov, 2012. "SDEs Driven by a Time-Changed Lévy Process and Their Associated Time-Fractional Order Pseudo-Differential Equations," Journal of Theoretical Probability, Springer, vol. 25(1), pages 262-279, March.
    12. Shantanu Awasthi & Indranil SenGupta, 2020. "First exit-time analysis for an approximate Barndorff-Nielsen and Shephard model with stationary self-decomposable variance process," Papers 2006.07167, arXiv.org, revised Jan 2021.
    13. Kei Kobayashi, 2011. "Stochastic Calculus for a Time-Changed Semimartingale and the Associated Stochastic Differential Equations," Journal of Theoretical Probability, Springer, vol. 24(3), pages 789-820, September.
    14. Kumar, A. & Nane, Erkan & Vellaisamy, P., 2011. "Time-changed Poisson processes," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1899-1910.
    15. Kobayashi, Kei, 2016. "Small ball probabilities for a class of time-changed self-similar processes," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 155-161.
    16. Fernandez-Anaya, G. & Valdes-Parada, F.J. & Alvarez-Ramirez, J., 2011. "On generalized fractional Cattaneo’s equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4198-4202.
    17. D’Ovidio, Mirko, 2012. "From Sturm–Liouville problems to fractional and anomalous diffusions," Stochastic Processes and their Applications, Elsevier, vol. 122(10), pages 3513-3544.
    18. D’Ovidio, Mirko & Loreti, Paola, 2018. "Solutions of fractional logistic equations by Euler’s numbers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 1081-1092.
    19. Kerger, Phillip & Kobayashi, Kei, 2020. "Parameter estimation for one-sided heavy-tailed distributions," Statistics & Probability Letters, Elsevier, vol. 164(C).
    20. Gupta, Neha & Kumar, Arun, 2022. "Inverse tempered stable subordinators and related processes with Mellin transform," Statistics & Probability Letters, Elsevier, vol. 186(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:21:p:4122-:d:963742. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.