IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v120y2010i12p2390-2411.html
   My bibliography  Save this article

Modeling and simulation with operator scaling

Author

Listed:
  • Cohen, Serge
  • Meerschaert, Mark M.
  • Rosinski, Jan

Abstract

Self-similar processes are useful models for natural systems that exhibit scaling. Operator scaling allows a different scale factor in each coordinate. This paper develops practical methods for modeling and simulation. A simulation method is developed for operator scaling Lévy processes, based on a series representation, along with a Gaussian approximation of the small jumps. Several examples are given to illustrate the range of practical applications. A complete characterization of symmetries in two dimensions is given, for any exponent and spectral measure, to inform the choice of these model parameters. The paper concludes with some extensions to general operator self-similar processes.

Suggested Citation

  • Cohen, Serge & Meerschaert, Mark M. & Rosinski, Jan, 2010. "Modeling and simulation with operator scaling," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2390-2411, December.
  • Handle: RePEc:eee:spapps:v:120:y:2010:i:12:p:2390-2411
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(10)00188-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meerschaert, Mark M. & Xiao, Yimin, 2005. "Dimension results for sample paths of operator stable Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 115(1), pages 55-75, January.
    2. Meerschaert, Mark M. & Scheffler, Hans-Peter, 2008. "Triangular array limits for continuous time random walks," Stochastic Processes and their Applications, Elsevier, vol. 118(9), pages 1606-1633, September.
    3. Jansen, Dennis W & de Vries, Casper G, 1991. "On the Frequency of Large Stock Returns: Putting Booms and Busts into Perspective," The Review of Economics and Statistics, MIT Press, vol. 73(1), pages 18-24, February.
    4. Meerschaert, Mark M. & Scalas, Enrico, 2006. "Coupled continuous time random walks in finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 114-118.
    5. Sato, Ken-iti, 1987. "Strictly operator-stable distributions," Journal of Multivariate Analysis, Elsevier, vol. 22(2), pages 278-295, August.
    6. Loretan, Mico & Phillips, Peter C. B., 1994. "Testing the covariance stationarity of heavy-tailed time series: An overview of the theory with applications to several financial datasets," Journal of Empirical Finance, Elsevier, vol. 1(2), pages 211-248, January.
    7. Meerschaert, Mark M. & Alan Veeh, Jeery, 1995. "Symmetry groups in d-space," Statistics & Probability Letters, Elsevier, vol. 22(1), pages 1-6, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Didier, Gustavo & Meerschaert, Mark M. & Pipiras, Vladas, 2018. "Domain and range symmetries of operator fractional Brownian fields," Stochastic Processes and their Applications, Elsevier, vol. 128(1), pages 39-78.
    2. Wensheng Wang, 2024. "The Moduli of Continuity for Operator Fractional Brownian Motion," Journal of Theoretical Probability, Springer, vol. 37(3), pages 2097-2120, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meerschaert, Mark M. & Scheffler, Hans-Peter, 2008. "Triangular array limits for continuous time random walks," Stochastic Processes and their Applications, Elsevier, vol. 118(9), pages 1606-1633, September.
    2. Runde, Ralf & Scheffner, Axel, 1998. "On the existence of moments: With an application to German stock returns," Technical Reports 1998,25, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    3. Chen, Zhimin & Ibragimov, Rustam, 2019. "One country, two systems? The heavy-tailedness of Chinese A- and H- share markets," Emerging Markets Review, Elsevier, vol. 38(C), pages 115-141.
    4. Xiufeng Yan, 2021. "Autoregressive conditional duration modelling of high frequency data," Papers 2111.02300, arXiv.org.
    5. Ibragimov, Rustam & Walden, Johan, 2007. "The limits of diversification when losses may be large," Scholarly Articles 2624460, Harvard University Department of Economics.
    6. Moore, Kyle & Sun, Pengfei & de Vries, Casper G. & Zhou, Chen, 2013. "The cross-section of tail risks in stock returns," MPRA Paper 45592, University Library of Munich, Germany.
    7. Salhi, Khaled & Deaconu, Madalina & Lejay, Antoine & Champagnat, Nicolas & Navet, Nicolas, 2016. "Regime switching model for financial data: Empirical risk analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 148-157.
    8. Rustam Ibragimov & Johan Walden, 2011. "Value at risk and efficiency under dependence and heavy-tailedness: models with common shocks," Annals of Finance, Springer, vol. 7(3), pages 285-318, August.
    9. Jansen, Dennis W. & Koedijk, Kees G. & de Vries, Casper G., 2000. "Portfolio selection with limited downside risk," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 247-269, November.
    10. Phillips, Peter C B & McFarland, James W & McMahon, Patrick C, 1996. "Robust Tests of Forward Exchange Market Efficiency with Empirical Evidence from the 1920s," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(1), pages 1-22, Jan.-Feb..
    11. Meerschaert, Mark M. & Nane, Erkan & Xiao, Yimin, 2013. "Fractal dimension results for continuous time random walks," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1083-1093.
    12. Longin, Francois, 2005. "The choice of the distribution of asset returns: How extreme value theory can help?," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 1017-1035, April.
    13. Ibragimov, Rustam, 2014. "On the robustness of location estimators in models of firm growth under heavy-tailedness," Journal of Econometrics, Elsevier, vol. 181(1), pages 25-33.
    14. Longin, Francois M., 2000. "From value at risk to stress testing: The extreme value approach," Journal of Banking & Finance, Elsevier, vol. 24(7), pages 1097-1130, July.
    15. Andrea Morone, 2008. "Financial markets in the laboratory: an experimental analysis of some stylized facts," Quantitative Finance, Taylor & Francis Journals, vol. 8(5), pages 513-532.
    16. Rustam Ibragimov & Marat Ibragimov & Rufat Khamidov, 2010. "Measuring Inequality in CIS Countries: Theory and Empirics," wiiw Balkan Observatory Working Papers 88, The Vienna Institute for International Economic Studies, wiiw.
    17. Longin, François, 1999. "From Value at Risk to Stress Testing: The Extreme Value Approach," CEPR Discussion Papers 2161, C.E.P.R. Discussion Papers.
    18. Iglesias, Emma M. & Linton, Oliver, 2009. "Estimation of tail thickness parameters from GJR-GARCH models," UC3M Working papers. Economics we094726, Universidad Carlos III de Madrid. Departamento de Economía.
    19. ROCKINGER, Michael & JONDEAU, Eric, 1999. "The Tail Behavior of Stock Returns: Emerging versus Mature Markets," HEC Research Papers Series 668, HEC Paris.
    20. Ibragimov, Rustam & Walden, Johan, 2008. "Portfolio diversification under local and moderate deviations from power laws," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 594-599, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:120:y:2010:i:12:p:2390-2411. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.