IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i21p4009-d956544.html
   My bibliography  Save this article

An SDP Dual Relaxation for the Robust Shortest-Path Problem with Ellipsoidal Uncertainty: Pierra’s Decomposition Method and a New Primal Frank–Wolfe-Type Heuristics for Duality Gap Evaluation

Author

Listed:
  • Chifaa Al Dahik

    (FEMTO-ST Institute, University Bourgogne Franche-Comté, CNRS, ENSMM, 25000 Besançon, France
    Laboratoire de Mathématiques de Besançon, University Bourgogne Franche-Comté, CNRS, 25000 Besançon, France)

  • Zeina Al Masry

    (FEMTO-ST Institute, University Bourgogne Franche-Comté, CNRS, ENSMM, 25000 Besançon, France)

  • Stéphane Chrétien

    (Laboratoire ERIC, UFR ASSP, Université Lyon 2, 69500 Lyon, France)

  • Jean-Marc Nicod

    (FEMTO-ST Institute, University Bourgogne Franche-Comté, CNRS, ENSMM, 25000 Besançon, France)

  • Landy Rabehasaina

    (Laboratoire de Mathématiques de Besançon, University Bourgogne Franche-Comté, CNRS, 25000 Besançon, France)

Abstract

This work addresses the robust counterpart of the shortest path problem (RSPP) with a correlated uncertainty set. Because this problem is difficult, a heuristic approach, based on Frank–Wolfe’s algorithm named discrete Frank–Wolfe (DFW), has recently been proposed. The aim of this paper is to propose a semi-definite programming relaxation for the RSPP that provides a lower bound to validate approaches such as the DFW algorithm. The relaxed problem is a semi-definite programming (SDP) problem that results from a bidualization that is done through a reformulation of the RSPP into a quadratic problem. Then, the relaxed problem is solved by using a sparse version of Pierra’s decomposition in a product space method. This validation method is suitable for large-size problems. The numerical experiments show that the gap between the solutions obtained with the relaxed and the heuristic approaches is relatively small.

Suggested Citation

  • Chifaa Al Dahik & Zeina Al Masry & Stéphane Chrétien & Jean-Marc Nicod & Landy Rabehasaina, 2022. "An SDP Dual Relaxation for the Robust Shortest-Path Problem with Ellipsoidal Uncertainty: Pierra’s Decomposition Method and a New Primal Frank–Wolfe-Type Heuristics for Duality Gap Evaluation," Mathematics, MDPI, vol. 10(21), pages 1-21, October.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:21:p:4009-:d:956544
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/21/4009/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/21/4009/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christoph Buchheim & Jannis Kurtz, 2018. "Robust combinatorial optimization under convex and discrete cost uncertainty," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(3), pages 211-238, September.
    2. Baron, Opher & Berman, Oded & Fazel-Zarandi, Mohammad M. & Roshanaei, Vahid, 2019. "Almost Robust Discrete Optimization," European Journal of Operational Research, Elsevier, vol. 276(2), pages 451-465.
    3. Marguerite Frank & Philip Wolfe, 1956. "An algorithm for quadratic programming," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 3(1‐2), pages 95-110, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cambier, Adrien & Chardy, Matthieu & Figueiredo, Rosa & Ouorou, Adam & Poss, Michael, 2022. "Optimizing subscriber migrations for a telecommunication operator in uncertain context," European Journal of Operational Research, Elsevier, vol. 298(1), pages 308-321.
    2. Guillaume Sagnol & Edouard Pauwels, 2019. "An unexpected connection between Bayes A-optimal designs and the group lasso," Statistical Papers, Springer, vol. 60(2), pages 565-584, April.
    3. Abdelfettah Laouzai & Rachid Ouafi, 2022. "A prediction model for atmospheric pollution reduction from urban traffic," Environment and Planning B, , vol. 49(2), pages 566-584, February.
    4. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    5. Francesco Rinaldi & Damiano Zeffiro, 2023. "Avoiding bad steps in Frank-Wolfe variants," Computational Optimization and Applications, Springer, vol. 84(1), pages 225-264, January.
    6. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    7. Arie M. C. A. Koster & Michael Poss, 2018. "Special issue on: robust combinatorial optimization," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(3), pages 207-209, September.
    8. Tiến-Sơn Phạm, 2019. "Optimality Conditions for Minimizers at Infinity in Polynomial Programming," Management Science, INFORMS, vol. 44(4), pages 1381-1395, November.
    9. Filippozzi, Rafaela & Gonçalves, Douglas S. & Santos, Luiz-Rafael, 2023. "First-order methods for the convex hull membership problem," European Journal of Operational Research, Elsevier, vol. 306(1), pages 17-33.
    10. Chassein, André & Goerigk, Marc & Kurtz, Jannis & Poss, Michael, 2019. "Faster algorithms for min-max-min robustness for combinatorial problems with budgeted uncertainty," European Journal of Operational Research, Elsevier, vol. 279(2), pages 308-319.
    11. Ke, Ginger Y. & Zhang, Huiwen & Bookbinder, James H., 2020. "A dual toll policy for maintaining risk equity in hazardous materials transportation with fuzzy incident rate," International Journal of Production Economics, Elsevier, vol. 227(C).
    12. Friesz, Terry L. & Tourreilles, Francisco A. & Han, Anthony Fu-Wha, 1979. "Multi-Criteria Optimization Methods in Transport Project Evaluation: The Case of Rural Roads in Developing Countries," Transportation Research Forum Proceedings 1970s 318817, Transportation Research Forum.
    13. Damian Clarke & Daniel Paila~nir & Susan Athey & Guido Imbens, 2023. "Synthetic Difference In Differences Estimation," Papers 2301.11859, arXiv.org, revised Feb 2023.
    14. Fabiana R. Oliveira & Orizon P. Ferreira & Gilson N. Silva, 2019. "Newton’s method with feasible inexact projections for solving constrained generalized equations," Computational Optimization and Applications, Springer, vol. 72(1), pages 159-177, January.
    15. Ali Fattahi & Sriram Dasu & Reza Ahmadi, 2019. "Mass Customization and “Forecasting Options’ Penetration Rates Problem”," Operations Research, INFORMS, vol. 67(4), pages 1120-1134, July.
    16. Pokojovy, Michael & Jobe, J. Marcus, 2022. "A robust deterministic affine-equivariant algorithm for multivariate location and scatter," Computational Statistics & Data Analysis, Elsevier, vol. 172(C).
    17. Wei-jie Cong & Le Wang & Hui Sun, 2020. "Rank-two update algorithm versus Frank–Wolfe algorithm with away steps for the weighted Euclidean one-center problem," Computational Optimization and Applications, Springer, vol. 75(1), pages 237-262, January.
    18. Bendotti, Pascale & Chrétienne, Philippe & Fouilhoux, Pierre & Pass-Lanneau, Adèle, 2021. "Dominance-based linear formulation for the Anchor-Robust Project Scheduling Problem," European Journal of Operational Research, Elsevier, vol. 295(1), pages 22-33.
    19. Bo Jiang & Tianyi Lin & Shiqian Ma & Shuzhong Zhang, 2019. "Structured nonconvex and nonsmooth optimization: algorithms and iteration complexity analysis," Computational Optimization and Applications, Springer, vol. 72(1), pages 115-157, January.
    20. Li, Li & Li, Xiaopeng, 2019. "Parsimonious trajectory design of connected automated traffic," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 1-21.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:21:p:4009-:d:956544. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.