Subgraph Adaptive Structure-Aware Graph Contrastive Learning
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Nasiri, Elahe & Berahmand, Kamal & Li, Yuefeng, 2021. "A new link prediction in multiplex networks using topologically biased random walks," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mingshuo Nie & Dongming Chen & Dongqi Wang, 2022. "Graph Embedding Method Based on Biased Walking for Link Prediction," Mathematics, MDPI, vol. 10(20), pages 1-13, October.
- Jiaping Cao & Tianyang Lei & Jichao Li & Jiang Jiang, 2023. "A Novel Link Prediction Method for Social Multiplex Networks Based on Deep Learning," Mathematics, MDPI, vol. 11(7), pages 1-19, April.
- Nikzad-Khasmakhi, N. & Balafar, M.A. & Reza Feizi-Derakhshi, M. & Motamed, Cina, 2021. "BERTERS: Multimodal representation learning for expert recommendation system with transformers and graph embeddings," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
- Wenjun Li & Ting Li & Kamal Berahmand, 2023. "An effective link prediction method in multiplex social networks using local random walk towards dependable pathways," Journal of Combinatorial Optimization, Springer, vol. 45(1), pages 1-27, January.
- Wang, Minggang & Zhu, Mengrui & Tian, Lixin, 2022. "A novel framework for carbon price forecasting with uncertainties," Energy Economics, Elsevier, vol. 112(C).
- Liu, Qian & Wang, Jian & Zhao, Zhidan & Zhao, Na, 2022. "Relatively important nodes mining algorithm based on community detection and biased random walk with restart," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
- Shengfeng Gan & Mohammed Alshahrani & Shichao Liu, 2022. "Positive-Unlabeled Learning for Network Link Prediction," Mathematics, MDPI, vol. 10(18), pages 1-13, September.
- Rai, Abhay Kumar & Tripathi, Shashi Prakash & Yadav, Rahul Kumar, 2023. "A novel similarity-based parameterized method for link prediction," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
- Guanchen Xiao & Jinzhi Liao & Zhen Tan & Xiaonan Zhang & Xiang Zhao, 2022. "A Two-Stage Framework for Directed Hypergraph Link Prediction," Mathematics, MDPI, vol. 10(14), pages 1-18, July.
More about this item
Keywords
graph contrastive learning; subgraph learning; network motif; unsupervised node classification; social network;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:17:p:3047-:d:896524. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.