IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v175y2023ip2s0960077923009475.html
   My bibliography  Save this article

A novel similarity-based parameterized method for link prediction

Author

Listed:
  • Rai, Abhay Kumar
  • Tripathi, Shashi Prakash
  • Yadav, Rahul Kumar

Abstract

Any complex real-world system that changes over time can be represented as a network. We analyze these networks using network theory-based techniques to infer useful information from them. An important problem associated with complex systems is the link prediction problem. It aims to find the possibility of future or missing links in a network. Existing similarity-based link prediction methods consider one or two network features for link prediction and perform well on specific types of networks. This empirical work proposes a novel similarity-based parameterized algorithm for link prediction in complex networks. The proposed method uses three simple features and performs well on the various categories of networks. Using AUC (Area Under the Receiver Operating Characteristics Curve), accuracy, and f-measure as the performance metrics, we conduct an experimental evaluation of the proposed method against nine state-of-the-art methods and on five real-world datasets. We also perform a time comparison of the proposed method against others. It is more accurate and time-efficient compared to recent learning-based methods. The experimental results assert the enhanced performance of the proposed method.

Suggested Citation

  • Rai, Abhay Kumar & Tripathi, Shashi Prakash & Yadav, Rahul Kumar, 2023. "A novel similarity-based parameterized method for link prediction," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
  • Handle: RePEc:eee:chsofr:v:175:y:2023:i:p2:s0960077923009475
    DOI: 10.1016/j.chaos.2023.114046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923009475
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leo Katz, 1953. "A new status index derived from sociometric analysis," Psychometrika, Springer;The Psychometric Society, vol. 18(1), pages 39-43, March.
    2. Tao Zhou & Linyuan Lü & Yi-Cheng Zhang, 2009. "Predicting missing links via local information," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(4), pages 623-630, October.
    3. Nasiri, Elahe & Berahmand, Kamal & Li, Yuefeng, 2021. "A new link prediction in multiplex networks using topologically biased random walks," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenjun Li & Ting Li & Kamal Berahmand, 2023. "An effective link prediction method in multiplex social networks using local random walk towards dependable pathways," Journal of Combinatorial Optimization, Springer, vol. 45(1), pages 1-27, January.
    2. Lin, Dan & Wu, Jiajing & Xuan, Qi & Tse, Chi K., 2022. "Ethereum transaction tracking: Inferring evolution of transaction networks via link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    3. Wang, Zuxi & Wu, Yao & Li, Qingguang & Jin, Fengdong & Xiong, Wei, 2016. "Link prediction based on hyperbolic mapping with community structure for complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 609-623.
    4. Lee, Yan-Li & Zhou, Tao, 2021. "Collaborative filtering approach to link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    5. Moradabadi, Behnaz & Meybodi, Mohammad Reza, 2016. "Link prediction based on temporal similarity metrics using continuous action set learning automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 361-373.
    6. Kai Yang & Yuan Liu & Zijuan Zhao & Xingxing Zhou & Peijin Ding, 2023. "Graph attention network via node similarity for link prediction," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(3), pages 1-10, March.
    7. Mungo, Luca & Lafond, François & Astudillo-Estévez, Pablo & Farmer, J. Doyne, 2023. "Reconstructing production networks using machine learning," Journal of Economic Dynamics and Control, Elsevier, vol. 148(C).
    8. Lü, Linyuan & Zhou, Tao, 2011. "Link prediction in complex networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1150-1170.
    9. Yu, Jiating & Wu, Ling-Yun, 2022. "Multiple Order Local Information model for link prediction in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    10. Charikhi, Mourad, 2024. "Association of the PageRank algorithm with similarity-based methods for link prediction in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    11. Bütün, Ertan & Kaya, Mehmet, 2019. "A pattern based supervised link prediction in directed complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1136-1145.
    12. Joon Hyung Cho & Jungpyo Lee & So Young Sohn, 2021. "Predicting future technological convergence patterns based on machine learning using link prediction," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5413-5429, July.
    13. Xiaoji Wan & Fen Chen & Hailin Li & Weibin Lin, 2022. "Potentially Related Commodity Discovery Based on Link Prediction," Mathematics, MDPI, vol. 10(19), pages 1-27, October.
    14. Nazim Choudhury & Shahadat Uddin, 2016. "Time-aware link prediction to explore network effects on temporal knowledge evolution," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(2), pages 745-776, August.
    15. Víctor Martínez & Fernando Berzal & Juan-Carlos Cubero, 2019. "NOESIS: A Framework for Complex Network Data Analysis," Complexity, Hindawi, vol. 2019, pages 1-14, October.
    16. Xing Li & Qingsong Li & Wei Wei & Zhiming Zheng, 2022. "Convolution Based Graph Representation Learning from the Perspective of High Order Node Similarities," Mathematics, MDPI, vol. 10(23), pages 1-13, December.
    17. Najari, Shaghayegh & Salehi, Mostafa & Ranjbar, Vahid & Jalili, Mahdi, 2019. "Link prediction in multiplex networks based on interlayer similarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    18. Liu, Shuxin & Ji, Xinsheng & Liu, Caixia & Bai, Yi, 2017. "Extended resource allocation index for link prediction of complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 174-183.
    19. Sherkat, Ehsan & Rahgozar, Maseud & Asadpour, Masoud, 2015. "Structural link prediction based on ant colony approach in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 80-94.
    20. Aziz, Furqan & Gul, Haji & Muhammad, Ishtiaq & Uddin, Irfan, 2020. "Link prediction using node information on local paths," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:175:y:2023:i:p2:s0960077923009475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.