IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v45y2023i1d10.1007_s10878-022-00961-z.html
   My bibliography  Save this article

An effective link prediction method in multiplex social networks using local random walk towards dependable pathways

Author

Listed:
  • Wenjun Li

    (Suzhou Vocational Institute of Industrial Technology)

  • Ting Li

    (Suzhou Blueprint Smart City Technology Co., Ltd)

  • Kamal Berahmand

    (Queensland University of Technology (QUT))

Abstract

Link Prediction Problem (LPP) is defined as the likelihood of a future connection between two nodes on a network that does not currently have a link between them. Usually, the description of LPP in online social networks is done in a single-layer, while this can lead to incorrect modeling of real-world details. Hence, LPP is described as multi-layer networks that involve performing predictions on a target layer taking into account the information of other layers. Multiplex networks are a common type of multi-layer network with the same nodes and different links in each layer. Because the topological structure is correlated between different layers in MSN, the LPP solution can be improved by combining information from different layers. This paper introduces a method for LPP on Multiplex Social Networks (MSN) based on discovering dependable pathways. Dependable pathways are defined by considering the importance of each link in the communication paths between nodes, where we present the importance of links by network mapping as a weighted network. The weight of the links is calculated based on the topological structures between the different layers in MSN by formulating the interlayer and intralayer links. Finally, we propose a new similarity measure with the development of the Local Random Walk measure based on dependable pathways and weighted network. This measure records network structure using pure random walk to calculate similarities and discovery of unknown links. Experimental studies have been performed on seven MSN real-world datasets. The results show the superiority of the proposed method compared to some state-of-the-art methods such as MLRW and LPIS.

Suggested Citation

  • Wenjun Li & Ting Li & Kamal Berahmand, 2023. "An effective link prediction method in multiplex social networks using local random walk towards dependable pathways," Journal of Combinatorial Optimization, Springer, vol. 45(1), pages 1-27, January.
  • Handle: RePEc:spr:jcomop:v:45:y:2023:i:1:d:10.1007_s10878-022-00961-z
    DOI: 10.1007/s10878-022-00961-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-022-00961-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-022-00961-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tao Zhou & Linyuan Lü & Yi-Cheng Zhang, 2009. "Predicting missing links via local information," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(4), pages 623-630, October.
    2. Nasiri, Elahe & Berahmand, Kamal & Li, Yuefeng, 2021. "A new link prediction in multiplex networks using topologically biased random walks," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    3. Barabási, A.L & Jeong, H & Néda, Z & Ravasz, E & Schubert, A & Vicsek, T, 2002. "Evolution of the social network of scientific collaborations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 311(3), pages 590-614.
    4. Leo Katz, 1953. "A new status index derived from sociometric analysis," Psychometrika, Springer;The Psychometric Society, vol. 18(1), pages 39-43, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chunning Wang & Fengqin Tang & Xuejing Zhao, 2023. "LPGRI: A Global Relevance-Based Link Prediction Approach for Multiplex Networks," Mathematics, MDPI, vol. 11(14), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Jiating & Wu, Ling-Yun, 2022. "Multiple Order Local Information model for link prediction in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    2. Sherkat, Ehsan & Rahgozar, Maseud & Asadpour, Masoud, 2015. "Structural link prediction based on ant colony approach in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 80-94.
    3. Kumar, Ajay & Singh, Shashank Sheshar & Singh, Kuldeep & Biswas, Bhaskar, 2020. "Link prediction techniques, applications, and performance: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    4. Wahid-Ul-Ashraf, Akanda & Budka, Marcin & Musial, Katarzyna, 2019. "How to predict social relationships — Physics-inspired approach to link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1110-1129.
    5. Mingshuo Nie & Dongming Chen & Dongqi Wang, 2022. "Graph Embedding Method Based on Biased Walking for Link Prediction," Mathematics, MDPI, vol. 10(20), pages 1-13, October.
    6. Mishra, Shivansh & Singh, Shashank Sheshar & Kumar, Ajay & Biswas, Bhaskar, 2022. "ELP: Link prediction in social networks based on ego network perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    7. Kumar, Ajay & Mishra, Shivansh & Singh, Shashank Sheshar & Singh, Kuldeep & Biswas, Bhaskar, 2020. "Link prediction in complex networks based on Significance of Higher-Order Path Index (SHOPI)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    8. Rai, Abhay Kumar & Tripathi, Shashi Prakash & Yadav, Rahul Kumar, 2023. "A novel similarity-based parameterized method for link prediction," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    9. Lin, Dan & Wu, Jiajing & Xuan, Qi & Tse, Chi K., 2022. "Ethereum transaction tracking: Inferring evolution of transaction networks via link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    10. Wang, Zuxi & Wu, Yao & Li, Qingguang & Jin, Fengdong & Xiong, Wei, 2016. "Link prediction based on hyperbolic mapping with community structure for complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 609-623.
    11. Lee, Yan-Li & Zhou, Tao, 2021. "Collaborative filtering approach to link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    12. Moradabadi, Behnaz & Meybodi, Mohammad Reza, 2016. "Link prediction based on temporal similarity metrics using continuous action set learning automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 361-373.
    13. Laurent Bergé & Iris Wanzenböck & Thomas Scherngell, 2015. "Centrality of regions in R&D networks: Conceptual clarifications and a new measure," Cahiers du GREThA (2007-2019) 2015-31, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    14. Kai Yang & Yuan Liu & Zijuan Zhao & Xingxing Zhou & Peijin Ding, 2023. "Graph attention network via node similarity for link prediction," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(3), pages 1-10, March.
    15. Mungo, Luca & Lafond, François & Astudillo-Estévez, Pablo & Farmer, J. Doyne, 2023. "Reconstructing production networks using machine learning," Journal of Economic Dynamics and Control, Elsevier, vol. 148(C).
    16. Lü, Linyuan & Zhou, Tao, 2011. "Link prediction in complex networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1150-1170.
    17. Charikhi, Mourad, 2024. "Association of the PageRank algorithm with similarity-based methods for link prediction in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    18. Bütün, Ertan & Kaya, Mehmet, 2019. "A pattern based supervised link prediction in directed complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1136-1145.
    19. Joon Hyung Cho & Jungpyo Lee & So Young Sohn, 2021. "Predicting future technological convergence patterns based on machine learning using link prediction," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5413-5429, July.
    20. Xiaoji Wan & Fen Chen & Hailin Li & Weibin Lin, 2022. "Potentially Related Commodity Discovery Based on Link Prediction," Mathematics, MDPI, vol. 10(19), pages 1-27, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:45:y:2023:i:1:d:10.1007_s10878-022-00961-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.