IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i16p2996-d892587.html
   My bibliography  Save this article

Investigation of Exact Solutions of Nonlinear Evolution Equations Using Unified Method

Author

Listed:
  • Xiaoming Wang

    (School of Mathematics & Computer Science, Shangrao Normal University, Shangrao 334001, China)

  • Shehbaz Ahmad Javed

    (Department of Mathematics, Division of Science and Technology, University of Education, Lahore 54770, Pakistan)

  • Abdul Majeed

    (Department of Mathematics, Division of Science and Technology, University of Education, Lahore 54770, Pakistan)

  • Mohsin Kamran

    (Department of Mathematics, Division of Science and Technology, University of Education, Lahore 54770, Pakistan)

  • Muhammad Abbas

    (Department of Mathematics, University of Sargodha, Sargodha 40100, Pakistan)

Abstract

In this article, an analytical technique based on unified method is applied to investigate the exact solutions of non-linear homogeneous evolution partial differential equations. These partial differential equations are reduced to ordinary differential equations using different traveling wave transformations, and exact solutions in rational and polynomial forms are obtained. The obtained solutions are presented in the form of 2D and 3D graphics to study the behavior of the analytical solution by setting out the values of suitable parameters. The acquired results reveal that the unified method is a suitable approach for handling non-linear homogeneous evolution equations.

Suggested Citation

  • Xiaoming Wang & Shehbaz Ahmad Javed & Abdul Majeed & Mohsin Kamran & Muhammad Abbas, 2022. "Investigation of Exact Solutions of Nonlinear Evolution Equations Using Unified Method," Mathematics, MDPI, vol. 10(16), pages 1-17, August.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:16:p:2996-:d:892587
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/16/2996/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/16/2996/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. He, Ji-Huan & Wu, Xu-Hong, 2006. "Exp-function method for nonlinear wave equations," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 700-708.
    2. Alvaro H. Salas & Cesar A. Gómez S., 2010. "Application of the Cole-Hopf Transformation for Finding Exact Solutions to Several Forms of the Seventh-Order KdV Equation," Mathematical Problems in Engineering, Hindawi, vol. 2010, pages 1-14, March.
    3. Pshtiwan Othman Mohammed & José António Tenreiro Machado & Juan L. G. Guirao & Ravi P. Agarwal, 2021. "Adomian Decomposition and Fractional Power Series Solution of a Class of Nonlinear Fractional Differential Equations," Mathematics, MDPI, vol. 9(9), pages 1-18, May.
    4. Ali, Khalid K. & Cattani, Carlo & Gómez-Aguilar, J.F. & Baleanu, Dumitru & Osman, M.S., 2020. "Analytical and numerical study of the DNA dynamics arising in oscillator-chain of Peyrard-Bishop model," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Ali Akbar & Md. Nur Alam & Md. Golam Hafez, 2016. "Application of the novel (G′/G)-expansion method to construct traveling wave solutions to the positive Gardner-KP equation," Indian Journal of Pure and Applied Mathematics, Springer, vol. 47(1), pages 85-96, March.
    2. He, Ji-Huan, 2009. "Nonlinear science as a fluctuating research frontier," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2533-2537.
    3. Sheng Zhang & Jiao Gao & Bo Xu, 2022. "An Integrable Evolution System and Its Analytical Solutions with the Help of Mixed Spectral AKNS Matrix Problem," Mathematics, MDPI, vol. 10(21), pages 1-16, October.
    4. Sabermahani, Sedigheh & Ordokhani, Yadollah & Rahimkhani, Parisa, 2023. "Application of generalized Lucas wavelet method for solving nonlinear fractal-fractional optimal control problems," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    5. Gupta, Vedika & Jain, Nikita & Katariya, Piyush & Kumar, Adarsh & Mohan, Senthilkumar & Ahmadian, Ali & Ferrara, Massimiliano, 2021. "An Emotion Care Model using Multimodal Textual Analysis on COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    6. Xu, Lan, 2008. "Variational approach to solitons of nonlinear dispersive K(m,n) equations," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 137-143.
    7. Fokas, A.S. & Cuevas-Maraver, J. & Kevrekidis, P.G., 2020. "A quantitative framework for exploring exit strategies from the COVID-19 lockdown," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    8. Suheel Abdullah Malik & Ijaz Mansoor Qureshi & Muhammad Amir & Aqdas Naveed Malik & Ihsanul Haq, 2015. "Numerical Solution to Generalized Burgers'-Fisher Equation Using Exp-Function Method Hybridized with Heuristic Computation," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-15, March.
    9. Zeng, Xiping & Dai, Zhengde & Li, Donglong, 2009. "New periodic soliton solutions for the (3+1)-dimensional potential-YTSF equation," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 657-661.
    10. Nguyen, Lu Trong Khiem, 2015. "Modified homogeneous balance method: Applications and new solutions," Chaos, Solitons & Fractals, Elsevier, vol. 73(C), pages 148-155.
    11. Javidi, M. & Golbabai, A., 2009. "Modified homotopy perturbation method for solving non-linear Fredholm integral equations," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1408-1412.
    12. Oke Davies Adeyemo & Lijun Zhang & Chaudry Masood Khalique, 2022. "Bifurcation Theory, Lie Group-Invariant Solutions of Subalgebras and Conservation Laws of a Generalized (2+1)-Dimensional BK Equation Type II in Plasma Physics and Fluid Mechanics," Mathematics, MDPI, vol. 10(14), pages 1-46, July.
    13. Hussain, Akhtar & Ibrahim, Tarek F. & Birkea, Fathea M.O. & Al-Sinan, B.R. & Alotaibi, Abeer M., 2024. "Abundant analytical solutions and diverse solitonic patterns for the complex Ginzburg–Landau equation," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    14. Jing Chang & Jin Zhang & Ming Cai, 2021. "Series Solutions of High-Dimensional Fractional Differential Equations," Mathematics, MDPI, vol. 9(17), pages 1-21, August.
    15. Hashtroud, A.M. & Ghamari, Danial & Moghimi-Araghi, Saman, 2020. "The crossover phenomena in surface growth models with height-dependent noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    16. EL Achab, Abdelfattah, 2020. "On the integrability of the generalized Pochhammer–Chree (PC) equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    17. Akbar, Yasir & Afsar, Haleem & Abbas, Shahzad & Javed, Muhammad Waqas & Ullah, Najib, 2021. "Dromions for the coupled Maccari’s system in fluid mechanics," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    18. Bekir, Ahmet & Cevikel, Adem C., 2009. "New exact travelling wave solutions of nonlinear physical models," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1733-1739.
    19. Sheng Zhang & Lijie Zhang & Bo Xu, 2019. "Rational Waves and Complex Dynamics: Analytical Insights into a Generalized Nonlinear Schrödinger Equation with Distributed Coefficients," Complexity, Hindawi, vol. 2019, pages 1-17, March.
    20. Tariq, Kalim U. & Bekir, Ahmet & Nisar, Sana, 2023. "The dynamical structures of the Sharma–Tasso–Olver model in doubly dispersive medium," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:16:p:2996-:d:892587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.