Deep Deterministic Policy Gradient-Based Active Disturbance Rejection Controller for Quad-Rotor UAVs
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Jonas Degrave & Federico Felici & Jonas Buchli & Michael Neunert & Brendan Tracey & Francesco Carpanese & Timo Ewalds & Roland Hafner & Abbas Abdolmaleki & Diego de las Casas & Craig Donner & Leslie F, 2022. "Magnetic control of tokamak plasmas through deep reinforcement learning," Nature, Nature, vol. 602(7897), pages 414-419, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Huang, Ruchen & He, Hongwen & Gao, Miaojue, 2023. "Training-efficient and cost-optimal energy management for fuel cell hybrid electric bus based on a novel distributed deep reinforcement learning framework," Applied Energy, Elsevier, vol. 346(C).
- Zhang, Tianhao & Dong, Zhe & Huang, Xiaojin, 2024. "Multi-objective optimization of thermal power and outlet steam temperature for a nuclear steam supply system with deep reinforcement learning," Energy, Elsevier, vol. 286(C).
- Maryam Ghalkhani & Saeid Habibi, 2022. "Review of the Li-Ion Battery, Thermal Management, and AI-Based Battery Management System for EV Application," Energies, MDPI, vol. 16(1), pages 1-16, December.
- Andrea Murari & Riccardo Rossi & Teddy Craciunescu & Jesús Vega & Michela Gelfusa, 2024. "A control oriented strategy of disruption prediction to avoid the configuration collapse of tokamak reactors," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
- Yang, Kaiyuan & Huang, Houjing & Vandans, Olafs & Murali, Adithya & Tian, Fujia & Yap, Roland H.C. & Dai, Liang, 2023. "Applying deep reinforcement learning to the HP model for protein structure prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
- Weifan Long & Taixian Hou & Xiaoyi Wei & Shichao Yan & Peng Zhai & Lihua Zhang, 2023. "A Survey on Population-Based Deep Reinforcement Learning," Mathematics, MDPI, vol. 11(10), pages 1-17, May.
- Hajkowicz, Stefan & Naughtin, Claire & Sanderson, Conrad & Schleiger, Emma & Karimi, Sarvnaz & Bratanova, Alexandra & Bednarz, Tomasz, 2022. "Artificial intelligence for science – adoption trends and future development pathways," MPRA Paper 115464, University Library of Munich, Germany.
- Jiyu Cui & Fang Wu & Wen Zhang & Lifeng Yang & Jianbo Hu & Yin Fang & Peng Ye & Qiang Zhang & Xian Suo & Yiming Mo & Xili Cui & Huajun Chen & Huabin Xing, 2023. "Direct prediction of gas adsorption via spatial atom interaction learning," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
- Malte Reinschmidt & József Fortágh & Andreas Günther & Valentin V. Volchkov, 2024. "Reinforcement learning in cold atom experiments," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Caputo, Cesare & Cardin, Michel-Alexandre & Ge, Pudong & Teng, Fei & Korre, Anna & Antonio del Rio Chanona, Ehecatl, 2023. "Design and planning of flexible mobile Micro-Grids using Deep Reinforcement Learning," Applied Energy, Elsevier, vol. 335(C).
- S. K. Kim & R. Shousha & S. M. Yang & Q. Hu & S. H. Hahn & A. Jalalvand & J.-K. Park & N. C. Logan & A. O. Nelson & Y.-S. Na & R. Nazikian & R. Wilcox & R. Hong & T. Rhodes & C. Paz-Soldan & Y. M. Jeo, 2024. "Highest fusion performance without harmful edge energy bursts in tokamak," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Fuhao Ji & Auralee Edelen & Ryan Roussel & Xiaozhe Shen & Sara Miskovich & Stephen Weathersby & Duan Luo & Mianzhen Mo & Patrick Kramer & Christopher Mayes & Mohamed A. K. Othman & Emilio Nanni & Xiji, 2024. "Multi-objective Bayesian active learning for MeV-ultrafast electron diffraction," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
- Stefano Bianchini & Moritz Muller & Pierre Pelletier, 2023. "Drivers and Barriers of AI Adoption and Use in Scientific Research," Papers 2312.09843, arXiv.org, revised Feb 2024.
More about this item
Keywords
reinforcement learning; deep deterministic policy gradient; active disturbance rejection control; quadrotor ummanned aerial vehicle;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2686-:d:875670. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.