IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i15p2594-d871348.html
   My bibliography  Save this article

A New Type-3 Fuzzy Logic Approach for Chaotic Systems: Robust Learning Algorithm

Author

Listed:
  • Man-Wen Tian

    (National Key Project Laboratory, Jiangxi University of Engineering, Xinyu 338000, China)

  • Shu-Rong Yan

    (National Key Project Laboratory, Jiangxi University of Engineering, Xinyu 338000, China)

  • Jinping Liu

    (College of Information Science and Engineering, Hunan Normal University, Changsha 410081, China)

  • Khalid A. Alattas

    (Department of Computer Science and Artificial Intelligence, College of Computer Science and Engineering, University of Jeddah, Jeddah 23890, Saudi Arabia)

  • Ardashir Mohammadzadeh

    (Multidisciplinary Center for Infrastructure Engineering, Shenyang University of Technology, Shenyang 110870, China)

  • Mai The Vu

    (School of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Korea)

Abstract

The chaotic systems have extensive applications in various branches of engineering problems such as financial problems, image processing, secure communications, and medical problems, among many others. In most applications, a synchronization needs to be made with another favorite chaotic system, or output trajectories track the desired signal. The dynamics of these systems are complicated, they are very sensitive to the initial conditions, and they exhibit a stochastic unpredictable behavior. In this study, a new robust type-3 fuzzy logic control (T3-FLC) is designed that can be applied for a large case of chaotic systems under faulty actuators and unknown perturbed dynamics. The dynamic uncertainties are estimated by the online learned type-3 fuzzy logic systems (T3-FLSs). The rules of T3-FLS are optimized by the Lyapunov theorem. The actuator nonlinearities are identified by a new method. The effects of approximation error (AE), dynamic perturbations and unknown time-varying control gains are tackled by the designed adaptive compensator. The designed compensator is constructed by online estimation of the upper bound of AE. By several simulations and comparison with the new FLS-based controllers, the better performance of the designed T3-FLC is shown. In addition, the performance of the designed controller is examined in a secure communication system.

Suggested Citation

  • Man-Wen Tian & Shu-Rong Yan & Jinping Liu & Khalid A. Alattas & Ardashir Mohammadzadeh & Mai The Vu, 2022. "A New Type-3 Fuzzy Logic Approach for Chaotic Systems: Robust Learning Algorithm," Mathematics, MDPI, vol. 10(15), pages 1-20, July.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2594-:d:871348
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/15/2594/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/15/2594/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohammad Nasir & Ali Sadollah & Przemyslaw Grzegorzewski & Jin Hee Yoon & Zong Woo Geem, 2021. "Harmony Search Algorithm and Fuzzy Logic Theory: An Extensive Review from Theory to Applications," Mathematics, MDPI, vol. 9(21), pages 1-46, October.
    2. Fanwei Meng & Dini Wang & Penghui Yang & Guanzhou Xie, 2019. "Application of Sum of Squares Method in Nonlinear H ∞ Control for Satellite Attitude Maneuvers," Complexity, Hindawi, vol. 2019, pages 1-10, November.
    3. Wang, Fei & Zheng, Zhaowen, 2019. "Quasi-projective synchronization of fractional order chaotic systems under input saturation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    4. Jun-Juh Yan & Hang-Hong Kuo, 2022. "Adaptive Memoryless Sliding Mode Control of Uncertain Rössler Systems with Unknown Time Delays," Mathematics, MDPI, vol. 10(11), pages 1-13, May.
    5. Fei Yu & Li Liu & Binyong He & Yuanyuan Huang & Changqiong Shi & Shuo Cai & Yun Song & Sichun Du & Qiuzhen Wan, 2019. "Analysis and FPGA Realization of a Novel 5D Hyperchaotic Four-Wing Memristive System, Active Control Synchronization, and Secure Communication Application," Complexity, Hindawi, vol. 2019, pages 1-18, November.
    6. Liu, Bin & Sun, Zhijie & Luo, Yihao & Zhong, Yuxuan, 2019. "Uniform synchronization for chaotic dynamical systems via event-triggered impulsive control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    7. Yadav, Vijay K. & Shukla, Vijay K. & Das, Subir, 2019. "Difference synchronization among three chaotic systems with exponential term and its chaos control," Chaos, Solitons & Fractals, Elsevier, vol. 124(C), pages 36-51.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexey V. Yakovlev & Vladimir V. Alekseev & Maria V. Volchikhina & Sergey V. Petrenko, 2022. "A Combinatorial Model for Determining Information Loss in Organizational and Technical Systems," Mathematics, MDPI, vol. 10(19), pages 1-12, September.
    2. Dorin Bordeașu & Octavian Proștean & Ioan Filip & Florin Drăgan & Cristian Vașar, 2022. "Modelling, Simulation and Controlling of a Multi-Pump System with Water Storage Powered by a Fluctuating and Intermittent Power Source," Mathematics, MDPI, vol. 10(21), pages 1-24, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shoreh, A.A.-H. & Kuznetsov, N.V. & Mokaev, T.N., 2022. "New adaptive synchronization algorithm for a general class of complex hyperchaotic systems with unknown parameters and its application to secure communication," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    2. Ruijuan Li & Onur Alp İlhan & Jalil Manafian & Khaled H. Mahmoud & Mostafa Abotaleb & Ammar Kadi, 2022. "A Mathematical Study of the (3+1)-D Variable Coefficients Generalized Shallow Water Wave Equation with Its Application in the Interaction between the Lump and Soliton Solutions," Mathematics, MDPI, vol. 10(17), pages 1-17, August.
    3. Xia, Mingli & Liu, Linna & Fang, Jianyin & Qu, Boyang, 2024. "Exponentially weighted input-to-state stability of stochastic differential systems via event-triggered impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    4. Mohammed Balubaid & Osman Taylan & Mustafa Tahsin Yilmaz & Ehsan Eftekhari-Zadeh & Ehsan Nazemi & Mohammed Alamoudi, 2022. "Central Nervous System: Overall Considerations Based on Hardware Realization of Digital Spiking Silicon Neurons (DSSNs) and Synaptic Coupling," Mathematics, MDPI, vol. 10(6), pages 1-20, March.
    5. Cui, Li & Lu, Ming & Ou, Qingli & Duan, Hao & Luo, Wenhui, 2020. "Analysis and Circuit Implementation of Fractional Order Multi-wing Hidden Attractors," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    6. Nwachioma, Christian & Pérez-Cruz, J. Humberto, 2021. "Analysis of a new chaotic system, electronic realization and use in navigation of differential drive mobile robot," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    7. Xuan, Deli & Tang, Ze & Feng, Jianwen & Park, Ju H., 2021. "Cluster synchronization of nonlinearly coupled Lur’e networks: Delayed impulsive adaptive control protocols," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    8. Sangpet, Teerawat & Kuntanapreeda, Suwat, 2020. "Finite-time synchronization of hyperchaotic systems based on feedback passivation," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    9. Yu, Nanxiang & Zhu, Wei, 2021. "Event-triggered impulsive chaotic synchronization of fractional-order differential systems," Applied Mathematics and Computation, Elsevier, vol. 388(C).
    10. Li, Mingyue & Wang, Mingzhu & Liu, Wenlu & Wu, Shuchen & Li, Xiaodi, 2023. "Exponential stability of nonlinear systems via event-triggered impulsive control based on partial states," Applied Mathematics and Computation, Elsevier, vol. 459(C).
    11. Tiwari, Ankit & Singh, Piyush Pratap & Roy, Binoy Krishna, 2024. "A realizable chaotic system with interesting sets of equilibria, characteristics, and its underactuated predefined-time sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    12. Can Zhao & Jinde Cao & Kaibo Shi & Yiqian Tang & Shouming Zhong & Fawaz E. Alsaadi, 2022. "Improved Nonfragile Sampled-Data Event-Triggered Control for the Exponential Synchronization of Delayed Complex Dynamical Networks," Mathematics, MDPI, vol. 10(19), pages 1-24, September.
    13. Zhao, Can & Liu, Xinzhi & Zhong, Shouming & Shi, Kaibo & Liao, Daixi & Zhong, Qishui, 2021. "Leader-following consensus of multi-agent systems via novel sampled-data event-triggered control," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    14. Hongguang Fan & Yue Rao & Kaibo Shi & Hui Wen, 2023. "Global Synchronization of Fractional-Order Multi-Delay Coupled Neural Networks with Multi-Link Complicated Structures via Hybrid Impulsive Control," Mathematics, MDPI, vol. 11(14), pages 1-17, July.
    15. khabaz, Mohamad Khaje & Eftekhari, S. Ali & Toghraie, Davood, 2022. "Vibration and dynamic analysis of a cantilever sandwich microbeam integrated with piezoelectric layers based on strain gradient theory and surface effects," Applied Mathematics and Computation, Elsevier, vol. 419(C).
    16. Balootaki, Mohammad Ahmadi & Rahmani, Hossein & Moeinkhah, Hossein & Mohammadzadeh, Ardashir, 2020. "On the Synchronization and Stabilization of fractional-order chaotic systems: Recent advances and future perspectives," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    17. Changjin Xu & Peiluan Li & Maoxin Liao & Zixin Liu & Qimei Xiao & Shuai Yuan, 2019. "Control Scheme for a Fractional-Order Chaotic Genesio-Tesi Model," Complexity, Hindawi, vol. 2019, pages 1-15, September.
    18. Yan, Hongyun & Qiao, Yuanhua & Duan, Lijuan & Miao, Jun, 2022. "New results of quasi-projective synchronization for fractional-order complex-valued neural networks with leakage and discrete delays," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    19. Mo, Wenjun & Bao, Haibo, 2022. "Finite-time synchronization for fractional-order quaternion-valued coupled neural networks with saturated impulse," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    20. Zhao, Rui & Wang, Baoxian & Jian, Jigui, 2022. "Global μ-stabilization of quaternion-valued inertial BAM neural networks with time-varying delays via time-delayed impulsive control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 223-245.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2594-:d:871348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.